Lower bound for class numbers of certain real quadratic fields
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $d$ be a square-free positive integer and $h(d)$ be the class number of the real quadratic field $\mathbb {Q}{(\sqrt {d})}.$ We give an explicit lower bound for $h(n^2+r)$, where $r=1,4$. Ankeny and Chowla proved that if $g>1$ is a natural number and $d=n^{2g}+1$ is a square-free integer, then $g \mid h(d)$ whenever $n>4$. Applying our lower bounds, we show that there does not exist any natural number $n>1$ such that $h(n^{2g}+1)=g$. We also obtain a similar result for the family $\mathbb {Q}(\sqrt {n^{2g}+4})$. As another application, we deduce some criteria for a class group of prime power order to be cyclic.
Let $d$ be a square-free positive integer and $h(d)$ be the class number of the real quadratic field $\mathbb {Q}{(\sqrt {d})}.$ We give an explicit lower bound for $h(n^2+r)$, where $r=1,4$. Ankeny and Chowla proved that if $g>1$ is a natural number and $d=n^{2g}+1$ is a square-free integer, then $g \mid h(d)$ whenever $n>4$. Applying our lower bounds, we show that there does not exist any natural number $n>1$ such that $h(n^{2g}+1)=g$. We also obtain a similar result for the family $\mathbb {Q}(\sqrt {n^{2g}+4})$. As another application, we deduce some criteria for a class group of prime power order to be cyclic.
DOI : 10.21136/CMJ.2022.0264-21
Classification : 11R11, 11R29, 11R42
Keywords: real quadratic field; class group; class number; Dedekind zeta values
@article{10_21136_CMJ_2022_0264_21,
     author = {Mishra, Mohit},
     title = {Lower bound for class numbers of certain real quadratic fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--14},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0264-21},
     mrnumber = {4541087},
     zbl = {07655753},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0264-21/}
}
TY  - JOUR
AU  - Mishra, Mohit
TI  - Lower bound for class numbers of certain real quadratic fields
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 1
EP  - 14
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0264-21/
DO  - 10.21136/CMJ.2022.0264-21
LA  - en
ID  - 10_21136_CMJ_2022_0264_21
ER  - 
%0 Journal Article
%A Mishra, Mohit
%T Lower bound for class numbers of certain real quadratic fields
%J Czechoslovak Mathematical Journal
%D 2023
%P 1-14
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0264-21/
%R 10.21136/CMJ.2022.0264-21
%G en
%F 10_21136_CMJ_2022_0264_21
Mishra, Mohit. Lower bound for class numbers of certain real quadratic fields. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 1-14. doi: 10.21136/CMJ.2022.0264-21

[1] Ankeny, N. C., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pac. J. Math. 5 (1955), 321-324. | DOI | MR | JFM

[2] Apostol, T. M.: Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147-157. | DOI | MR | JFM

[3] Biró, A.: Chowla's conjecture. Acta Arith. 107 (2003), 179-194. | DOI | MR | JFM

[4] Biró, A.: Yokoi's conjecture. Acta Arith. 106 (2003), 85-104. | DOI | MR | JFM

[5] Biró, A., Lapkova, K.: The class number one problem for the real quadratic fields $\mathbb{Q}(\sqrt{(an)^2+4a})$. Acta Arith. 172 (2016), 117-131. | DOI | MR | JFM

[6] Byeon, D., Kim, H. K.: Class number 1 criteria for real quadratic fields of Richaud-Degert type. J. Number Theory 57 (1996), 328-339. | DOI | MR | JFM

[7] Byeon, D., Kim, H. K.: Class number 2 criteria for real quadratic fields of Richaud-Degert type. J. Number Theory 62 (1997), 257-272. | DOI | MR | JFM

[8] Chakraborty, K., Hoque, A., Mishra, M.: A note on certain real quadratic fields with class number up to three. Kyushu J. Math. 74 (2020), 201-210. | DOI | MR | JFM

[9] Chakraborty, K., Hoque, A., Mishra, M.: On the structure of order 4 class groups of $\mathbb{Q} (\sqrt{n^2+1})$. Ann. Math. Qué. 45 (2021), 203-212. | DOI | MR | JFM

[10] Chowla, S., Friedlander, J.: Class numbers and quadratic residues. Glasg. Math. J. 17 (1976), 47-52. | DOI | MR | JFM

[11] Hasse, H.: Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elem. Math. 20 (1965), 49-59 German. | DOI | MR | JFM

[12] Kim, H. K., Leu, M.-G., Ono, T.: On two conjectures on real quadratic fields. Proc. Japan Acad., Ser. A 63 (1987), 222-224. | DOI | MR | JFM

[13] Lang, H.: Über eine Gattung elemetar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper. J. Reine Angew. Math. 233 (1968), 123-175 German. | DOI | MR | JFM

[14] Lang, S.: Algebraic Number Theory. Graduate Texts in Mathematics 110. Springer, New York (1994). | DOI | MR | JFM

[15] Lapkova, K.: Class number one problem for real quadratic fields of a certain type. Acta Arith. 153 (2012), 281-298. | DOI | MR | JFM

[16] Lemmermeyer, F.: Algebraic Number Theory. Bilkent University, Bilkent (2006), Available at {\def\let \relax \brokenlink{ http://www.fen.bilkent.edu.tr/ franz/ant06/ant.pdf}}\kern0pt.

[17] Mollin, R. A.: Lower bounds for class numbers of real quadratic fields. Proc. Am. Math. Soc. 96 (1986), 545-550. | DOI | MR | JFM

[18] Mollin, R. A.: Lower bounds for class numbers of real quadratic and biquadratic fields. Proc. Am. Math. Soc. 101 (1987), 439-444. | DOI | MR | JFM

[19] Mollin, R. A.: On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J. 105 (1987), 39-47. | DOI | MR | JFM

[20] Mollin, R. A., Williams, H. C.: A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Am. Math. Soc. 102 (1988), 794-796. | DOI | MR | JFM

[21] Siegel, C. L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. 10 (1969), 87-102 German. | MR | JFM

[22] Weinberger, P. J.: Real quadratic fields with class numbers divisible by $n$. J. Number Theory 5 (1973), 237-241. | DOI | MR | JFM

[23] Yokoi, H.: On real quadratic fields containing units with norm -1. Nagoya Math. J. 33 (1968), 139-152. | DOI | MR | JFM

[24] Yokoi, H.: On the fundamental unit of real quadratic fields with norm 1. J. Number Theory 2 (1970), 106-115. | DOI | MR | JFM

[25] Yokoi, H.: Class-number one problem for certain kind of real quadratic fields. Class Numbers and Fundamental Units of Algebraic Number Fields Nagoya University, Nagoya (1986), 125-137. | MR | JFM

Cité par Sources :