On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 989-1002
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a local ring and $C$ a semidualizing module of $R$. We investigate the behavior of certain classes of generalized Cohen-Macaulay $R$-modules under the Foxby equivalence between the Auslander and Bass classes with respect to $C$. In particular, we show that generalized Cohen-Macaulay $R$-modules are invariant under this equivalence and if $M$ is a finitely generated $R$-module in the Auslander class with respect to $C$ such that $C\otimes _RM$ is surjective Buchsbaum, then $M$ is also surjective \hbox {Buchsbaum}.\looseness +1
Let $R$ be a local ring and $C$ a semidualizing module of $R$. We investigate the behavior of certain classes of generalized Cohen-Macaulay $R$-modules under the Foxby equivalence between the Auslander and Bass classes with respect to $C$. In particular, we show that generalized Cohen-Macaulay $R$-modules are invariant under this equivalence and if $M$ is a finitely generated $R$-module in the Auslander class with respect to $C$ such that $C\otimes _RM$ is surjective Buchsbaum, then $M$ is also surjective \hbox {Buchsbaum}.\looseness +1
DOI : 10.21136/CMJ.2022.0227-21
Classification : 13C14, 13D05, 13D45
Keywords: Auslander class; Bass class; Buchsbaum module; dualizing module; generalized Cohen-Macaulay module; local cohomology; semidualizing module; surjective Buchsbaum module
@article{10_21136_CMJ_2022_0227_21,
     author = {Abolfath Beigi, Kosar and Divaani-Aazar, Kamran and Tousi, Massoud},
     title = {On the invariance of certain types of generalized {Cohen-Macaulay} modules under {Foxby} equivalence},
     journal = {Czechoslovak Mathematical Journal},
     pages = {989--1002},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0227-21},
     mrnumber = {4517589},
     zbl = {07655776},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/}
}
TY  - JOUR
AU  - Abolfath Beigi, Kosar
AU  - Divaani-Aazar, Kamran
AU  - Tousi, Massoud
TI  - On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 989
EP  - 1002
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/
DO  - 10.21136/CMJ.2022.0227-21
LA  - en
ID  - 10_21136_CMJ_2022_0227_21
ER  - 
%0 Journal Article
%A Abolfath Beigi, Kosar
%A Divaani-Aazar, Kamran
%A Tousi, Massoud
%T On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence
%J Czechoslovak Mathematical Journal
%D 2022
%P 989-1002
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/
%R 10.21136/CMJ.2022.0227-21
%G en
%F 10_21136_CMJ_2022_0227_21
Abolfath Beigi, Kosar; Divaani-Aazar, Kamran; Tousi, Massoud. On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 989-1002. doi: 10.21136/CMJ.2022.0227-21

[1] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7. Springer, Berlin (1998). | MR | JFM

[2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM

[4] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions: A functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | JFM

[5] Foxby, H.-B.: Hyperhomological algebra & commutative rings, notes in preparation.

[6] Herzog, J.: Komplex Auflösungen und Dualität in der lokalen Algebra: Habilitationsschrift. Universität Regensburg, Regensburg (1974), German.

[7] Kawasaki, T.: Surjective-Buchsbaum modules over Cohen-Macaulay local rings. Math. Z. 218 (1995), 191-205. | DOI | MR | JFM

[8] Miyazaki, C.: Graded Buchsbaum algebras and Segre products. Tokyo J. Math. 12 (1989), 1-20. | DOI | MR | JFM

[9] Rotman, J. J.: An Introduction to Homological Algebra. Universitext. Springer, New York (2009). | DOI | MR | JFM

[10] Sather-Wagstaff, S.: Semidualizing modules. Available at https://www.ndsu.edu/pubweb/ {ssatherw/DOCS/sdm.pdf} (2000), 109 pages.

[11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57-73 German. | DOI | MR | JFM

[12] Sharp, R. Y.: Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings. Proc. Lond. Math. Soc., III. Ser. 25 (1972), 303-328. | DOI | MR | JFM

[13] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications: An Interaction Between Algebra, Geometry and Topology. Springer, Berlin (1986). | DOI | MR | JFM

[14] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM

[15] Trung, N. V.: Absolutely superficial sequences. Math. Proc. Camb. Philos. Soc. 93 (1983), 35-47. | DOI | MR | JFM

[16] Yamagishi, K.: Bass number characterization of surjective Buchsbaum modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 261-279. | DOI | MR | JFM

Cité par Sources :