Keywords: Auslander class; Bass class; Buchsbaum module; dualizing module; generalized Cohen-Macaulay module; local cohomology; semidualizing module; surjective Buchsbaum module
@article{10_21136_CMJ_2022_0227_21,
author = {Abolfath Beigi, Kosar and Divaani-Aazar, Kamran and Tousi, Massoud},
title = {On the invariance of certain types of generalized {Cohen-Macaulay} modules under {Foxby} equivalence},
journal = {Czechoslovak Mathematical Journal},
pages = {989--1002},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0227-21},
mrnumber = {4517589},
zbl = {07655776},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/}
}
TY - JOUR AU - Abolfath Beigi, Kosar AU - Divaani-Aazar, Kamran AU - Tousi, Massoud TI - On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence JO - Czechoslovak Mathematical Journal PY - 2022 SP - 989 EP - 1002 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/ DO - 10.21136/CMJ.2022.0227-21 LA - en ID - 10_21136_CMJ_2022_0227_21 ER -
%0 Journal Article %A Abolfath Beigi, Kosar %A Divaani-Aazar, Kamran %A Tousi, Massoud %T On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence %J Czechoslovak Mathematical Journal %D 2022 %P 989-1002 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0227-21/ %R 10.21136/CMJ.2022.0227-21 %G en %F 10_21136_CMJ_2022_0227_21
Abolfath Beigi, Kosar; Divaani-Aazar, Kamran; Tousi, Massoud. On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 989-1002. doi: 10.21136/CMJ.2022.0227-21
[1] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7. Springer, Berlin (1998). | MR | JFM
[2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM
[3] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM
[4] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions: A functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | JFM
[5] Foxby, H.-B.: Hyperhomological algebra & commutative rings, notes in preparation.
[6] Herzog, J.: Komplex Auflösungen und Dualität in der lokalen Algebra: Habilitationsschrift. Universität Regensburg, Regensburg (1974), German.
[7] Kawasaki, T.: Surjective-Buchsbaum modules over Cohen-Macaulay local rings. Math. Z. 218 (1995), 191-205. | DOI | MR | JFM
[8] Miyazaki, C.: Graded Buchsbaum algebras and Segre products. Tokyo J. Math. 12 (1989), 1-20. | DOI | MR | JFM
[9] Rotman, J. J.: An Introduction to Homological Algebra. Universitext. Springer, New York (2009). | DOI | MR | JFM
[10] Sather-Wagstaff, S.: Semidualizing modules. Available at https://www.ndsu.edu/pubweb/ {ssatherw/DOCS/sdm.pdf} (2000), 109 pages.
[11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57-73 German. | DOI | MR | JFM
[12] Sharp, R. Y.: Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings. Proc. Lond. Math. Soc., III. Ser. 25 (1972), 303-328. | DOI | MR | JFM
[13] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications: An Interaction Between Algebra, Geometry and Topology. Springer, Berlin (1986). | DOI | MR | JFM
[14] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM
[15] Trung, N. V.: Absolutely superficial sequences. Math. Proc. Camb. Philos. Soc. 93 (1983), 35-47. | DOI | MR | JFM
[16] Yamagishi, K.: Bass number characterization of surjective Buchsbaum modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 261-279. | DOI | MR | JFM
Cité par Sources :