Keywords: Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group
@article{10_21136_CMJ_2022_0225_22,
author = {Fasol\u{a}, Georgiana and T\u{a}rn\u{a}uceanu, Marius},
title = {On a group-theoretical generalization of the {Gauss} formula},
journal = {Czechoslovak Mathematical Journal},
pages = {311--317},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0225-22},
mrnumber = {4541104},
zbl = {07655770},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/}
}
TY - JOUR AU - Fasolă, Georgiana AU - Tărnăuceanu, Marius TI - On a group-theoretical generalization of the Gauss formula JO - Czechoslovak Mathematical Journal PY - 2023 SP - 311 EP - 317 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/ DO - 10.21136/CMJ.2022.0225-22 LA - en ID - 10_21136_CMJ_2022_0225_22 ER -
%0 Journal Article %A Fasolă, Georgiana %A Tărnăuceanu, Marius %T On a group-theoretical generalization of the Gauss formula %J Czechoslovak Mathematical Journal %D 2023 %P 311-317 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/ %R 10.21136/CMJ.2022.0225-22 %G en %F 10_21136_CMJ_2022_0225_22
Fasolă, Georgiana; Tărnăuceanu, Marius. On a group-theoretical generalization of the Gauss formula. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 311-317. doi: 10.21136/CMJ.2022.0225-22
[1] Baishya, S. J.: Revisiting the Leinster groups. C. R., Math., Acad. Sci. Paris 352 (2014), 1-6. | DOI | MR | JFM
[2] Baishya, S. J., Das, A. K.: Harmonic numbers and finite groups. Rend. Semin. Mat. Univ. Padova 132 (2014), 33-43. | DOI | MR | JFM
[3] Bidwell, J. N. S., Curran, M. J., McCaughan, D. J.: Automorphisms of direct products of finite groups. Arch. Math. 86 (2006), 481-489. | DOI | MR | JFM
[4] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups. Bull. Lond. Math. Soc. 37 (2005), 381-385. | DOI | MR | JFM
[5] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups II. J. Group Theory 9 (2006), 537-547. | DOI | MR | JFM
[6] Medts, T. De, Maróti, A.: Perfect numbers and finite groups. Rend. Semin. Mat. Univ. Padova 129 (2013), 17-33. | DOI | MR | JFM
[7] Medts, T. De, Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups. Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. | DOI | MR | JFM
[8] González-Sánchez, J., Jaikin-Zapirain, A.: Finite $p$-groups with small automorphism group. Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. | DOI | MR | JFM
[9] Hillar, C. J., Rhea, D. L.: Automorphisms of finite abelian groups. Am. Math. Mon. 114 (2007), 917-923. | DOI | MR | JFM
[10] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). | DOI | MR | JFM
[11] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Am. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. | DOI | MR
[12] Sehgal, A., Sehgal, S., Sharma, P. K.: The number of automorphism of a finite abelian group of rank two. J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. | DOI | MR | JFM
[13] Tărnăuceanu, M.: A generalization of the Euler's totient function. Asian-Eur. J. Math. 8 (2015), Article ID 1550087, 13 pages. | DOI | MR | JFM
[14] Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups II. Commun. Algebra 45 (2017), 4865-4868. | DOI | MR | JFM
Cité par Sources :