On a group-theoretical generalization of the Gauss formula
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 311-317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
DOI : 10.21136/CMJ.2022.0225-22
Classification : 11A25, 11A99, 20D60, 20D99
Keywords: Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group
@article{10_21136_CMJ_2022_0225_22,
     author = {Fasol\u{a}, Georgiana and T\u{a}rn\u{a}uceanu, Marius},
     title = {On a group-theoretical generalization of the {Gauss} formula},
     journal = {Czechoslovak Mathematical Journal},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.21136/CMJ.2022.0225-22},
     mrnumber = {4541104},
     zbl = {07655770},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/}
}
TY  - JOUR
AU  - Fasolă, Georgiana
AU  - Tărnăuceanu, Marius
TI  - On a group-theoretical generalization of the Gauss formula
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 311
EP  - 317
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/
DO  - 10.21136/CMJ.2022.0225-22
LA  - en
ID  - 10_21136_CMJ_2022_0225_22
ER  - 
%0 Journal Article
%A Fasolă, Georgiana
%A Tărnăuceanu, Marius
%T On a group-theoretical generalization of the Gauss formula
%J Czechoslovak Mathematical Journal
%D 2023
%P 311-317
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/
%R 10.21136/CMJ.2022.0225-22
%G en
%F 10_21136_CMJ_2022_0225_22
Fasolă, Georgiana; Tărnăuceanu, Marius. On a group-theoretical generalization of the Gauss formula. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 311-317. doi : 10.21136/CMJ.2022.0225-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/

Cité par Sources :