On a group-theoretical generalization of the Gauss formula
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 311-317
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups.
DOI : 10.21136/CMJ.2022.0225-22
Classification : 11A25, 11A99, 20D60, 20D99
Keywords: Gauss formula; Euler's totient function; automorphism group; finite group; cyclic group; abelian group
@article{10_21136_CMJ_2022_0225_22,
     author = {Fasol\u{a}, Georgiana and T\u{a}rn\u{a}uceanu, Marius},
     title = {On a group-theoretical generalization of the {Gauss} formula},
     journal = {Czechoslovak Mathematical Journal},
     pages = {311--317},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0225-22},
     mrnumber = {4541104},
     zbl = {07655770},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/}
}
TY  - JOUR
AU  - Fasolă, Georgiana
AU  - Tărnăuceanu, Marius
TI  - On a group-theoretical generalization of the Gauss formula
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 311
EP  - 317
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/
DO  - 10.21136/CMJ.2022.0225-22
LA  - en
ID  - 10_21136_CMJ_2022_0225_22
ER  - 
%0 Journal Article
%A Fasolă, Georgiana
%A Tărnăuceanu, Marius
%T On a group-theoretical generalization of the Gauss formula
%J Czechoslovak Mathematical Journal
%D 2023
%P 311-317
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-22/
%R 10.21136/CMJ.2022.0225-22
%G en
%F 10_21136_CMJ_2022_0225_22
Fasolă, Georgiana; Tărnăuceanu, Marius. On a group-theoretical generalization of the Gauss formula. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 311-317. doi: 10.21136/CMJ.2022.0225-22

[1] Baishya, S. J.: Revisiting the Leinster groups. C. R., Math., Acad. Sci. Paris 352 (2014), 1-6. | DOI | MR | JFM

[2] Baishya, S. J., Das, A. K.: Harmonic numbers and finite groups. Rend. Semin. Mat. Univ. Padova 132 (2014), 33-43. | DOI | MR | JFM

[3] Bidwell, J. N. S., Curran, M. J., McCaughan, D. J.: Automorphisms of direct products of finite groups. Arch. Math. 86 (2006), 481-489. | DOI | MR | JFM

[4] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups. Bull. Lond. Math. Soc. 37 (2005), 381-385. | DOI | MR | JFM

[5] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups II. J. Group Theory 9 (2006), 537-547. | DOI | MR | JFM

[6] Medts, T. De, Maróti, A.: Perfect numbers and finite groups. Rend. Semin. Mat. Univ. Padova 129 (2013), 17-33. | DOI | MR | JFM

[7] Medts, T. De, Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups. Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. | DOI | MR | JFM

[8] González-Sánchez, J., Jaikin-Zapirain, A.: Finite $p$-groups with small automorphism group. Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. | DOI | MR | JFM

[9] Hillar, C. J., Rhea, D. L.: Automorphisms of finite abelian groups. Am. Math. Mon. 114 (2007), 917-923. | DOI | MR | JFM

[10] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. AMS, Providence (2008). | DOI | MR | JFM

[11] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian. Trans. Am. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. | DOI | MR

[12] Sehgal, A., Sehgal, S., Sharma, P. K.: The number of automorphism of a finite abelian group of rank two. J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. | DOI | MR | JFM

[13] Tărnăuceanu, M.: A generalization of the Euler's totient function. Asian-Eur. J. Math. 8 (2015), Article ID 1550087, 13 pages. | DOI | MR | JFM

[14] Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups II. Commun. Algebra 45 (2017), 4865-4868. | DOI | MR | JFM

Cité par Sources :