Keywords: weak injective module; weak flat module; weak $n$-injective module; weak $n$-flat module; cotorsion theory
@article{10_21136_CMJ_2022_0225_21,
author = {Arunachalam, Umamaheswaran and Raja, Saravanan and Chelliah, Selvaraj and Annadevasahaya Mani, Joseph Kennedy},
title = {Weak $n$-injective and weak $n$-fat modules},
journal = {Czechoslovak Mathematical Journal},
pages = {913--925},
year = {2022},
volume = {72},
number = {3},
doi = {10.21136/CMJ.2022.0225-21},
mrnumber = {4467948},
zbl = {07584108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/}
}
TY - JOUR AU - Arunachalam, Umamaheswaran AU - Raja, Saravanan AU - Chelliah, Selvaraj AU - Annadevasahaya Mani, Joseph Kennedy TI - Weak $n$-injective and weak $n$-fat modules JO - Czechoslovak Mathematical Journal PY - 2022 SP - 913 EP - 925 VL - 72 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/ DO - 10.21136/CMJ.2022.0225-21 LA - en ID - 10_21136_CMJ_2022_0225_21 ER -
%0 Journal Article %A Arunachalam, Umamaheswaran %A Raja, Saravanan %A Chelliah, Selvaraj %A Annadevasahaya Mani, Joseph Kennedy %T Weak $n$-injective and weak $n$-fat modules %J Czechoslovak Mathematical Journal %D 2022 %P 913-925 %V 72 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/ %R 10.21136/CMJ.2022.0225-21 %G en %F 10_21136_CMJ_2022_0225_21
Arunachalam, Umamaheswaran; Raja, Saravanan; Chelliah, Selvaraj; Annadevasahaya Mani, Joseph Kennedy. Weak $n$-injective and weak $n$-fat modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 913-925. doi: 10.21136/CMJ.2022.0225-21
[1] Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring. Available at , 38 pages . | arXiv
[2] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216 \99999DOI99999 10.1080/00927879608825742 . | MR | JFM
[3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). | DOI | MR | JFM
[4] Gao, Z., Huang, Z.: Weak injective covers and dimension of modules. Acta Math. Hung. 147 (2015), 135-157 \99999DOI99999 10.1007/s10474-015-0540-7 . | MR | JFM
[5] Gao, Z., Wang, F.: All Gorenstein hereditary rings are coherent. J. Algebra Appl. 13 (2014), Article ID 1350140, 5 pages \99999DOI99999 10.1142/S0219498813501405 . | MR | JFM
[6] Gao, Z., Wang, F.: Weak injective and weak flat modules. Commun. Algebra 43 (2015), 3857-3868 \99999DOI99999 10.1080/00927872.2014.924128 . | MR | JFM
[7] Lee, S. B.: $n$-coherent rings. Commun. Algebra 30 (2002), 1119-1126 \99999DOI99999 10.1080/00927870209342374 . | MR | JFM
[8] Pérez, M. A.: Introduction to Abelian Model Structures and Gorenstein Homological Dimensions. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016). | DOI | MR | JFM
[9] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329 \99999DOI99999 10.1112/jlms/s2-2.2.323 . | MR | JFM
[10] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. | DOI | MR | JFM
Cité par Sources :