Weak $n$-injective and weak $n$-fat modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 913-925
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce and study the concepts of weak $n$-injective and weak $n$-flat modules in terms of super finitely presented modules whose projective dimension is at most $n$, which generalize the $n$-FP-injective and $n$-flat modules. We show that the class of all weak $n$-injective $R$-modules is injectively resolving, whereas that of weak $n$-flat right \hbox {$R$-modules} is projectively resolving and the class of weak $n$-injective (or weak $n$-flat) modules together with its left (or right) orthogonal class forms a hereditary (or perfect hereditary) cotorsion theory.\looseness +1
We introduce and study the concepts of weak $n$-injective and weak $n$-flat modules in terms of super finitely presented modules whose projective dimension is at most $n$, which generalize the $n$-FP-injective and $n$-flat modules. We show that the class of all weak $n$-injective $R$-modules is injectively resolving, whereas that of weak $n$-flat right \hbox {$R$-modules} is projectively resolving and the class of weak $n$-injective (or weak $n$-flat) modules together with its left (or right) orthogonal class forms a hereditary (or perfect hereditary) cotorsion theory.\looseness +1
DOI : 10.21136/CMJ.2022.0225-21
Classification : 16D40, 16D50, 16E10, 16E30
Keywords: weak injective module; weak flat module; weak $n$-injective module; weak $n$-flat module; cotorsion theory
@article{10_21136_CMJ_2022_0225_21,
     author = {Arunachalam, Umamaheswaran and Raja, Saravanan and Chelliah, Selvaraj and Annadevasahaya Mani, Joseph Kennedy},
     title = {Weak $n$-injective and weak $n$-fat modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {913--925},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0225-21},
     mrnumber = {4467948},
     zbl = {07584108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/}
}
TY  - JOUR
AU  - Arunachalam, Umamaheswaran
AU  - Raja, Saravanan
AU  - Chelliah, Selvaraj
AU  - Annadevasahaya Mani, Joseph Kennedy
TI  - Weak $n$-injective and weak $n$-fat modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 913
EP  - 925
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/
DO  - 10.21136/CMJ.2022.0225-21
LA  - en
ID  - 10_21136_CMJ_2022_0225_21
ER  - 
%0 Journal Article
%A Arunachalam, Umamaheswaran
%A Raja, Saravanan
%A Chelliah, Selvaraj
%A Annadevasahaya Mani, Joseph Kennedy
%T Weak $n$-injective and weak $n$-fat modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 913-925
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0225-21/
%R 10.21136/CMJ.2022.0225-21
%G en
%F 10_21136_CMJ_2022_0225_21
Arunachalam, Umamaheswaran; Raja, Saravanan; Chelliah, Selvaraj; Annadevasahaya Mani, Joseph Kennedy. Weak $n$-injective and weak $n$-fat modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 913-925. doi: 10.21136/CMJ.2022.0225-21

[1] Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring. Available at , 38 pages . | arXiv

[2] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216 \99999DOI99999 10.1080/00927879608825742 . | MR | JFM

[3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). | DOI | MR | JFM

[4] Gao, Z., Huang, Z.: Weak injective covers and dimension of modules. Acta Math. Hung. 147 (2015), 135-157 \99999DOI99999 10.1007/s10474-015-0540-7 . | MR | JFM

[5] Gao, Z., Wang, F.: All Gorenstein hereditary rings are coherent. J. Algebra Appl. 13 (2014), Article ID 1350140, 5 pages \99999DOI99999 10.1142/S0219498813501405 . | MR | JFM

[6] Gao, Z., Wang, F.: Weak injective and weak flat modules. Commun. Algebra 43 (2015), 3857-3868 \99999DOI99999 10.1080/00927872.2014.924128 . | MR | JFM

[7] Lee, S. B.: $n$-coherent rings. Commun. Algebra 30 (2002), 1119-1126 \99999DOI99999 10.1080/00927870209342374 . | MR | JFM

[8] Pérez, M. A.: Introduction to Abelian Model Structures and Gorenstein Homological Dimensions. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016). | DOI | MR | JFM

[9] Stenström, B.: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329 \99999DOI99999 10.1112/jlms/s2-2.2.323 . | MR | JFM

[10] Yang, X., Liu, Z.: $n$-flat and $n$-FP-injective modules. Czech. Math. J. 61 (2011), 359-369. | DOI | MR | JFM

Cité par Sources :