Congruences for certain families of Apéry-like sequences
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 875-912
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We systematically investigate the expressions and congruences for both a one-parameter family $\{G_n(x)\}$ as well as a two-parameter family $\{G_n(r,m)\}$ of sequences.
We systematically investigate the expressions and congruences for both a one-parameter family $\{G_n(x)\}$ as well as a two-parameter family $\{G_n(r,m)\}$ of sequences.
DOI : 10.21136/CMJ.2022.0224-21
Classification : 05A10, 05A19, 11A07, 11B68, 11E25
Keywords: Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
@article{10_21136_CMJ_2022_0224_21,
     author = {Sun, Zhi-Hong},
     title = {Congruences for certain families of {Ap\'ery-like} sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {875--912},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0224-21},
     mrnumber = {4467947},
     zbl = {07584107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0224-21/}
}
TY  - JOUR
AU  - Sun, Zhi-Hong
TI  - Congruences for certain families of Apéry-like sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 875
EP  - 912
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0224-21/
DO  - 10.21136/CMJ.2022.0224-21
LA  - en
ID  - 10_21136_CMJ_2022_0224_21
ER  - 
%0 Journal Article
%A Sun, Zhi-Hong
%T Congruences for certain families of Apéry-like sequences
%J Czechoslovak Mathematical Journal
%D 2022
%P 875-912
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0224-21/
%R 10.21136/CMJ.2022.0224-21
%G en
%F 10_21136_CMJ_2022_0224_21
Sun, Zhi-Hong. Congruences for certain families of Apéry-like sequences. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 875-912. doi: 10.21136/CMJ.2022.0224-21

[1] Ahlgren, S.: Gaussian hypergeometric series and combinatorial congruences. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics Developments in Mathematics 4. Kluwer Academic, Dordrecht (2001), 1-12. | DOI | MR | JFM

[2] Almkvist, G., Zudilin, W.: Differential equations, mirror maps and zeta values. Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 481-515. | MR | JFM

[3] Apéry, R.: Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque 61 (1979), 11-13 French. | MR | JFM

[4] Gould, H. W.: Combinatorial Identities. A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. West Virginia University, Morgantown (1972). | MR | JFM

[5] Granville, A.: Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers. Organic Mathematics CMS Conference Proceedings 20. AMS, Providence (1997), 253-276. | MR | JFM

[6] Guo, V. J. W.: Proof of Sun's conjectures on integer-valued polynomials. J. Math. Anal. Appl. 444 (2016), 182-191. | DOI | MR | JFM

[7] Liu, J.-C., Ni, H.-X.: On two supercongruences involving Almkvist-Zudilin sequences. Czech. Math. J. 71 (2021), 1211-1219. | DOI | MR | JFM

[8] Mortenson, E.: Supercongruences for truncated $_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms. Proc. Am. Math. Soc. 133 (2005), 321-330. | DOI | MR | JFM

[9] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$. A. K. Peters, Wellesley (1996). | MR | JFM

[10] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org | Zbl

[11] Sun, Z.-H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105 (2000), 193-223. | DOI | MR | JFM

[12] Sun, Z.-H.: Congruences involving Bernoulli and Euler numbers. J. Number Theory 128 (2008), 280-312. | DOI | MR | JFM

[13] Sun, Z.-H.: Congruences concerning Legendre polynomials. Proc. Am. Math. Soc. 139 (2011), 1915-1929. | DOI | MR | JFM

[14] Sun, Z.-H.: Identities and congruences for a new sequence. Int. J. Number Theory 8 (2012), 207-225. | DOI | MR | JFM

[15] Sun, Z.-H.: Congruences concerning Legendre polynomials. II. J. Number Theory 133 (2013), 1950-1976. | DOI | MR | JFM

[16] Sun, Z.-H.: Congruences involving ${2k\choose k}^{2}{3k\choose k}$. J. Number Theory 133 (2013), 1572-1595. | DOI | MR | JFM

[17] Sun, Z.-H.: Legendre polynomials and supercongruences. Acta Arith. 159 (2013), 169-200. | DOI | MR | JFM

[18] Sun, Z.-H.: Generalized Legendre polynomials and related supercongruences. J. Number Theory 143 (2014), 293-319. | DOI | MR | JFM

[19] Sun, Z.-H.: Super congruences concerning Bernoulli polynomials. Int. J. Number Theory 11 (2015), 2393-2404. | DOI | MR | JFM

[20] Sun, Z.-H.: Supercongruences involving Bernoulli polynomials. Int. J. Number Theory 12 (2016), 1259-1271. | DOI | MR | JFM

[21] Sun, Z.-H.: Supercongruences involving Euler polynomials. Proc. Am. Math. Soc. 144 (2016), 3295-3308. | DOI | MR | JFM

[22] Sun, Z.-H.: Super congruences for two Apéry-like sequences. J. Difference Equ. Appl. 24 (2018), 1685-1713. | DOI | MR | JFM

[23] Sun, Z.-H.: Congruences involving binomial coefficients and Apéry-like numbers. Publ. Math. 96 (2020), 315-346. | DOI | MR | JFM

[24] Sun, Z.-H.: Supercongruences and binary quadratic forms. Acta Arith. 199 (2021), 1-32. | DOI | MR | JFM

[25] Sun, Z.-W.: Super congruences and Euler numbers. Sci. China, Math. 54 (2011), 2509-2535. | DOI | MR | JFM

[26] Sun, Z.-W.: On sums involving products of three binomial coefficients. Acta Arith. 156 (2012), 123-141. | DOI | MR | JFM

[27] Sun, Z.-W.: Conjectures and results on $x^2$ mod $p^2$ with $4p=x^2+dy^2$. Number Theory and Related Areas Advanced Lectures in Mathematics (ALM) 27. International Press, Somerville (2013), 149-197. | MR | JFM

[28] Sun, Z.-W.: Some new series for $1/\pi$ and related congruences. J. Nanjing Univ., Math. Biq. 31 (2014), 150-164. | DOI | MR | JFM

[29] Sun, Z.-W.: New series for some special values of $L$-functions. J. Nanjing Univ., Math. Biq. 32 (2015), 189-218. | DOI | MR | JFM

[30] Sun, Z.-W.: Supercongruences involving dual sequences. Finite Fields Appl. 46 (2017), 179-216. | DOI | MR | JFM

[31] Tauraso, R.: Supercongruences for a truncated hypergeometric series. Integers 12 (2012), Article ID A45, 12 pages. | MR | JFM

[32] Tauraso, R.: Supercongruences related to $_3F_2(1)$ involving harmonic numbers. Int. J. Number Theory 14 (2018), 1093-1109. | DOI | MR | JFM

[33] Enckevort, C. van, Straten, D. van: Monodromy calculations of fourth order equations of Calabi-Yau type. Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 539-559. | DOI | MR | JFM

[34] Wang, C.: On two conjectural supercongruences of Z.-W. Sun. Ramanujan J. 56 (2021), 1111-1121. | DOI | MR | JFM

[35] Wang, C., Sun, Z.-W.: Proof of some conjectural hypergeometric supercongruences via curious identities. J. Math. Anal. Appl. 505 (2022), Article ID 125575, 20 pages. | DOI | MR | JFM

[36] Zagier, D.: Integral solutions of Apéry-like recurrence equations. Groups and Symmetries CRM Proceedings and Lecture Notes 47. AMS, Providence (2009), 349-366. | DOI | MR | JFM

Cité par Sources :