Congruences for certain families of Apéry-like sequences
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 875-912
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We systematically investigate the expressions and congruences for both a one-parameter family $\{G_n(x)\}$ as well as a two-parameter family $\{G_n(r,m)\}$ of sequences.
We systematically investigate the expressions and congruences for both a one-parameter family $\{G_n(x)\}$ as well as a two-parameter family $\{G_n(r,m)\}$ of sequences.
DOI :
10.21136/CMJ.2022.0224-21
Classification :
05A10, 05A19, 11A07, 11B68, 11E25
Keywords: Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
Keywords: Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
@article{10_21136_CMJ_2022_0224_21,
author = {Sun, Zhi-Hong},
title = {Congruences for certain families of {Ap\'ery-like} sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {875--912},
year = {2022},
volume = {72},
number = {3},
doi = {10.21136/CMJ.2022.0224-21},
mrnumber = {4467947},
zbl = {07584107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0224-21/}
}
TY - JOUR AU - Sun, Zhi-Hong TI - Congruences for certain families of Apéry-like sequences JO - Czechoslovak Mathematical Journal PY - 2022 SP - 875 EP - 912 VL - 72 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0224-21/ DO - 10.21136/CMJ.2022.0224-21 LA - en ID - 10_21136_CMJ_2022_0224_21 ER -
Sun, Zhi-Hong. Congruences for certain families of Apéry-like sequences. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 875-912. doi: 10.21136/CMJ.2022.0224-21
Cité par Sources :