Complex symmetry of Toeplitz operators on the weighted Bergman spaces
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 855-873 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a concrete description of complex symmetric monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_{z^p \bar {z}^q}$ to be complex symmetric. When $p,q \in \mathbb {N}^2$, we prove that $T_{z^p \bar {z}^q}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on $A^2(\mathbb {D}_{n})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$.
We give a concrete description of complex symmetric monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_{z^p \bar {z}^q}$ to be complex symmetric. When $p,q \in \mathbb {N}^2$, we prove that $T_{z^p \bar {z}^q}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_{z^p \bar {z}^q}$ on $A^2(\mathbb {D}_{n})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$.
DOI : 10.21136/CMJ.2022.0210-21
Classification : 32A36, 47B35
Keywords: complex symmetry; Toeplitz operator; weighted Bergman space
@article{10_21136_CMJ_2022_0210_21,
     author = {Hu, Xiao-He},
     title = {Complex symmetry of {Toeplitz} operators on the weighted {Bergman} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {855--873},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0210-21},
     mrnumber = {4467946},
     zbl = {07584106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0210-21/}
}
TY  - JOUR
AU  - Hu, Xiao-He
TI  - Complex symmetry of Toeplitz operators on the weighted Bergman spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 855
EP  - 873
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0210-21/
DO  - 10.21136/CMJ.2022.0210-21
LA  - en
ID  - 10_21136_CMJ_2022_0210_21
ER  - 
%0 Journal Article
%A Hu, Xiao-He
%T Complex symmetry of Toeplitz operators on the weighted Bergman spaces
%J Czechoslovak Mathematical Journal
%D 2022
%P 855-873
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0210-21/
%R 10.21136/CMJ.2022.0210-21
%G en
%F 10_21136_CMJ_2022_0210_21
Hu, Xiao-He. Complex symmetry of Toeplitz operators on the weighted Bergman spaces. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 855-873. doi: 10.21136/CMJ.2022.0210-21

[1] Bu, Q., Chen, Y., Zhu, S.: Complex symmetric Toeplitz operators. Integral Equations Oper. Theory 93 (2021), Article ID 15, 19 pages. | DOI | MR | JFM

[2] Dong, X.-T., Zhu, K.: Commutators and semi-commutators of Toeplitz operators on the unit ball. Integral Equations Oper. Theory 86 (2016), 271-300. | DOI | MR | JFM

[3] Garcia, S. R., Poore, D. E.: On the norm closure problem for complex symmetric operators. Proc. Am. Math. Soc. 141 (2013), 549. | DOI | MR | JFM

[4] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358 (2006), 1285-1315. | DOI | MR | JFM

[5] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. II. Trans. Am. Math. Soc. 359 (2007), 3913-3931. | DOI | MR | JFM

[6] Garcia, S. R., Wogen, W. R.: Complex symmetric partial isometries. J. Funct. Anal. 257 (2009), 1251-1260. | DOI | MR | JFM

[7] Garcia, S. R., Wogen, W. R.: Some new classes of complex symmetric operators. Trans. Am. Math. Soc. 362 (2010), 6065-6077. | DOI | MR | JFM

[8] Guo, K., Ji, Y., Zhu, S.: A $C^*$-algebra approach to complex symmetric operators. Trans. Am. Math. Soc. 367 (2015), 6903-6942. | DOI | MR | JFM

[9] Guo, K., Zhu, S.: A canonical decomposition of complex symmetric operators. J. Oper. Theory 72 (2014), 529-547. | DOI | MR | JFM

[10] Jiang, C., Dong, X., Zhou, Z.: Complex symmetric Toeplitz operators on the unit polydisk and the unit ball. Acta Math. Sci., Ser. B, Engl. Ed. 40 (2020), 35-44. | DOI | MR

[11] Jiang, C., Zhou, Z.-H., Dong, X.-T.: Commutator and semicommutator of two monomial-type Toeplitz operators on the unit polydisk. Complex Anal. Oper. Theory 13 (2019), 2095-2121. | DOI | MR | JFM

[12] Ko, E., Lee, J. E.: On complex symmetric Toeplitz operators. J. Math. Anal. Appl. 434 (2016), 20-34. | DOI | MR | JFM

[13] Li, A., Liu, Y., Chen, Y.: Complex symmetric Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl. 487 (2020), Article ID 123998, 12 pages. | DOI | MR | JFM

[14] Li, R., Yang, Y., Lu, Y.: A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces. J. Math. Anal. Appl. 489 (2020), Article ID 124173, 11 pages. | DOI | MR | JFM

[15] Noor, S. W.: Complex symmetry of Toeplitz operators with continuous symbols. Arch. Math. 109 (2017), 455-460. | DOI | MR | JFM

[16] Zhu, S., Li, C. G.: Complex symmetric weighted shifts. Trans. Am. Math. Soc. 365 (2013), 511-530. | DOI | MR | JFM

[17] Zhu, S., Li, C. G., Ji, Y. Q.: The class of complex symmetric operators is not norm closed. Proc. Am. Math. Soc. 140 (2012), 1705-1708. | DOI | MR | JFM

Cité par Sources :