Semi $n$-ideals of commutative rings
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 977-988
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring with identity. A proper ideal $I$ is said to be an $n$-ideal of $R$ if for $a,b\in R$, $ab\in I$ and $a\notin \sqrt {0}$ imply $b\in I$. We give a new generalization of the concept of $n$-ideals by defining a proper ideal $I$ of $R$ to be a semi $n$-ideal if whenever $a\in R$ is such that $a^{2}\in I$, then $a\in \sqrt {0}$ or $a\in I$. We give some examples of semi \hbox {$n$-ideal} and investigate semi $n$-ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of ideals. Moreover, we prove that every proper ideal of a zero dimensional general ZPI-ring $R$ is a semi $n$-ideal if and only if $R$ is a UN-ring or $R\cong F_{1}\times F_{2}\times \cdots \times F_{k}$, where $F_{i}$ is a field for $i=1,\dots ,k$. Finally, for a ring homomorphism $f\colon R\rightarrow S$ and an ideal $J$ of $S$, we study some forms of a semi $n$-ideal of the amalgamation $R\bowtie ^{f}J$ of $R$ with $S$ along $J$ with respect to $f$.
DOI :
10.21136/CMJ.2022.0208-21
Classification :
13A15, 13A99
Keywords: semi $n$-ideal; semiprime ideal; $n$-ideal
Keywords: semi $n$-ideal; semiprime ideal; $n$-ideal
@article{10_21136_CMJ_2022_0208_21,
author = {Yetkin \c{C}elikel, Ece and Khashan, Hani A.},
title = {Semi $n$-ideals of commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {977--988},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2022},
doi = {10.21136/CMJ.2022.0208-21},
mrnumber = {4517588},
zbl = {07655775},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/}
}
TY - JOUR AU - Yetkin Çelikel, Ece AU - Khashan, Hani A. TI - Semi $n$-ideals of commutative rings JO - Czechoslovak Mathematical Journal PY - 2022 SP - 977 EP - 988 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/ DO - 10.21136/CMJ.2022.0208-21 LA - en ID - 10_21136_CMJ_2022_0208_21 ER -
%0 Journal Article %A Yetkin Çelikel, Ece %A Khashan, Hani A. %T Semi $n$-ideals of commutative rings %J Czechoslovak Mathematical Journal %D 2022 %P 977-988 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/ %R 10.21136/CMJ.2022.0208-21 %G en %F 10_21136_CMJ_2022_0208_21
Yetkin Çelikel, Ece; Khashan, Hani A. Semi $n$-ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 977-988. doi: 10.21136/CMJ.2022.0208-21
Cité par Sources :