Semi $n$-ideals of commutative rings
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 977-988.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with identity. A proper ideal $I$ is said to be an $n$-ideal of $R$ if for $a,b\in R$, $ab\in I$ and $a\notin \sqrt {0}$ imply $b\in I$. We give a new generalization of the concept of $n$-ideals by defining a proper ideal $I$ of $R$ to be a semi $n$-ideal if whenever $a\in R$ is such that $a^{2}\in I$, then $a\in \sqrt {0}$ or $a\in I$. We give some examples of semi \hbox {$n$-ideal} and investigate semi $n$-ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of ideals. Moreover, we prove that every proper ideal of a zero dimensional general ZPI-ring $R$ is a semi $n$-ideal if and only if $R$ is a UN-ring or $R\cong F_{1}\times F_{2}\times \cdots \times F_{k}$, where $F_{i}$ is a field for $i=1,\dots ,k$. Finally, for a ring homomorphism $f\colon R\rightarrow S$ and an ideal $J$ of $S$, we study some forms of a semi $n$-ideal of the amalgamation $R\bowtie ^{f}J$ of $R$ with $S$ along $J$ with respect to $f$.
DOI : 10.21136/CMJ.2022.0208-21
Classification : 13A15, 13A99
Keywords: semi $n$-ideal; semiprime ideal; $n$-ideal
@article{10_21136_CMJ_2022_0208_21,
     author = {Yetkin \c{C}elikel, Ece and Khashan, Hani A.},
     title = {Semi $n$-ideals of commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {977--988},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0208-21},
     mrnumber = {4517588},
     zbl = {07655775},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/}
}
TY  - JOUR
AU  - Yetkin Çelikel, Ece
AU  - Khashan, Hani A.
TI  - Semi $n$-ideals of commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 977
EP  - 988
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/
DO  - 10.21136/CMJ.2022.0208-21
LA  - en
ID  - 10_21136_CMJ_2022_0208_21
ER  - 
%0 Journal Article
%A Yetkin Çelikel, Ece
%A Khashan, Hani A.
%T Semi $n$-ideals of commutative rings
%J Czechoslovak Mathematical Journal
%D 2022
%P 977-988
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/
%R 10.21136/CMJ.2022.0208-21
%G en
%F 10_21136_CMJ_2022_0208_21
Yetkin Çelikel, Ece; Khashan, Hani A. Semi $n$-ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 977-988. doi : 10.21136/CMJ.2022.0208-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/

Cité par Sources :