Keywords: semi $n$-ideal; semiprime ideal; $n$-ideal
@article{10_21136_CMJ_2022_0208_21,
author = {Yetkin \c{C}elikel, Ece and Khashan, Hani A.},
title = {Semi $n$-ideals of commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {977--988},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0208-21},
mrnumber = {4517588},
zbl = {07655775},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/}
}
TY - JOUR AU - Yetkin Çelikel, Ece AU - Khashan, Hani A. TI - Semi $n$-ideals of commutative rings JO - Czechoslovak Mathematical Journal PY - 2022 SP - 977 EP - 988 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0208-21/ DO - 10.21136/CMJ.2022.0208-21 LA - en ID - 10_21136_CMJ_2022_0208_21 ER -
Yetkin Çelikel, Ece; Khashan, Hani A. Semi $n$-ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 977-988. doi: 10.21136/CMJ.2022.0208-21
[1] Badawi, A.: On weakly semiprime ideals of commutative rings. Beitr. Algebra Geom. 57 (2016), 589-597. | DOI | MR | JFM
[2] Călugăreanu, G.: $UN$-rings. J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. | DOI | MR | JFM
[3] Çelikel, E. Yetkin: Generalizations of $n$-ideals of commutative rings. Erzincan Univ. J. Sci. Technol. 12 (2019), 650-657. | DOI | MR
[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. | DOI | MR | JFM
[5] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. | DOI | MR | JFM
[6] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Appled Mathematics 90. Queen's University, Kingston (1992). | MR | JFM
[7] Khashan, H. A., Bani-Ata, A. B.: $J$-ideals of commutative rings. Int. Electron. J. Algebra 29 (2021), 148-164. | DOI | MR | JFM
[8] Khashan, H. A., Çelikel, E. Yetkin: Quasi $J$-ideals of commutative rings. (to appear) in Ric. Mat (2022). | DOI | MR
[9] Khashan, H. A., Çelikel, E. Yetkin: Weakly $J$-ideals of commutative rings. Filomat 36 (2022), 485-495. | DOI | MR
[10] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. | DOI | MR | JFM
Cité par Sources :