Keywords: ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value
@article{10_21136_CMJ_2022_0203_21,
author = {Liu, Xiaoli and Yang, Zhishan},
title = {Weighted {Erd\H{o}s-Kac} type theorem over quadratic field in short intervals},
journal = {Czechoslovak Mathematical Journal},
pages = {957--976},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0203-21},
mrnumber = {4517587},
zbl = {07655774},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0203-21/}
}
TY - JOUR AU - Liu, Xiaoli AU - Yang, Zhishan TI - Weighted Erdős-Kac type theorem over quadratic field in short intervals JO - Czechoslovak Mathematical Journal PY - 2022 SP - 957 EP - 976 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0203-21/ DO - 10.21136/CMJ.2022.0203-21 LA - en ID - 10_21136_CMJ_2022_0203_21 ER -
%0 Journal Article %A Liu, Xiaoli %A Yang, Zhishan %T Weighted Erdős-Kac type theorem over quadratic field in short intervals %J Czechoslovak Mathematical Journal %D 2022 %P 957-976 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0203-21/ %R 10.21136/CMJ.2022.0203-21 %G en %F 10_21136_CMJ_2022_0203_21
Liu, Xiaoli; Yang, Zhishan. Weighted Erdős-Kac type theorem over quadratic field in short intervals. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 957-976. doi: 10.21136/CMJ.2022.0203-21
[1] Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM
[2] Chandrasekharan, K., Good, A.: On the number of integral ideals in Galois extensions. Monatsh. Math. 95 (1983), 99-109. | DOI | MR | JFM
[3] Chandrasekharan, K., Narasimhan, R.: The approximate functional equation for a class of zeta-functions. Math. Ann. 152 (1963), 30-64. | DOI | MR | JFM
[4] Erdős, P., Kac, M.: On the Gaussian law of errors in the theory of additive functions. Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. | DOI | MR | JFM
[5] Huxley, M. N.: On the difference between consecutive primes. Invent. Math. 15 (1972), 164-170. | DOI | MR | JFM
[6] Landau, E.: Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. German B. G. Teubner, Leipzig (1927),\99999JFM99999 53.0141.09. | MR
[7] Liu, X.-L., Yang, Z.-S.: Weighted Erdős-Kac type theorems over Gaussian field in short intervals. Acta Math. Hung. 162 (2020), 465-482. | DOI | MR | JFM
[8] Lü, G., Wang, Y.: Note on the number of integral ideals in Galois extensions. Sci. China, Math. 53 (2010), 2417-2424. | DOI | MR | JFM
[9] Lü, G., Yang, Z.: The average behavior of the coefficients of Dedekind zeta function over square numbers. J. Number Theory 131 (2011), 1924-1938. | DOI | MR | JFM
[10] Nowak, W. G.: On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59-74. | DOI | MR | JFM
[11] Wu, J., Wu, Q.: Mean values for a class of arithmetic functions in short intervals. Math. Nachr. 293 (2020), 178-202. | DOI | MR | JFM
[12] Zhai, W.: Asymptotics for a class of arithmetic functions. Acta Arith. 170 (2015), 135-160. | DOI | MR | JFM
Cité par Sources :