Additive decomposition of matrices under rank conditions and zero pattern constraints
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 825-854 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with additive decompositions $A=A_1+\cdots +A_p$ of a given matrix $A$, where the ranks of the summands $A_1,\ldots , A_p$ are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
This paper deals with additive decompositions $A=A_1+\cdots +A_p$ of a given matrix $A$, where the ranks of the summands $A_1,\ldots , A_p$ are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
DOI : 10.21136/CMJ.2022.0185-21
Classification : 05C20, 05C50, 15A03, 15A21
Keywords: additive decomposition; rank constraint; zero pattern constraint; directed bipartite graph; $ß{L}$-free directed bipartite graph; permutation $ß{L}$-free directed bipartite graph; Bell number; Stirling partition number
@article{10_21136_CMJ_2022_0185_21,
     author = {Bart, Harm and Ehrhardt, Torsten},
     title = {Additive decomposition of matrices under rank conditions and zero pattern constraints},
     journal = {Czechoslovak Mathematical Journal},
     pages = {825--854},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0185-21},
     mrnumber = {4467945},
     zbl = {07584105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0185-21/}
}
TY  - JOUR
AU  - Bart, Harm
AU  - Ehrhardt, Torsten
TI  - Additive decomposition of matrices under rank conditions and zero pattern constraints
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 825
EP  - 854
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0185-21/
DO  - 10.21136/CMJ.2022.0185-21
LA  - en
ID  - 10_21136_CMJ_2022_0185_21
ER  - 
%0 Journal Article
%A Bart, Harm
%A Ehrhardt, Torsten
%T Additive decomposition of matrices under rank conditions and zero pattern constraints
%J Czechoslovak Mathematical Journal
%D 2022
%P 825-854
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0185-21/
%R 10.21136/CMJ.2022.0185-21
%G en
%F 10_21136_CMJ_2022_0185_21
Bart, Harm; Ehrhardt, Torsten. Additive decomposition of matrices under rank conditions and zero pattern constraints. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 825-854. doi: 10.21136/CMJ.2022.0185-21

[1] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition in zero pattern matrix algebras. Czech. Math. J. 66 (2016), 987-1005. | DOI | MR | JFM

[2] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras. Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics Operator Theory: Advances and Applications 259. Birkhäuser, Basel (2017), 79-124. | DOI | MR | JFM

[3] Bart, H., Ehrhardt, T., Silbermann, B.: $ß{L}$-free directed bipartite graphs and echelon-type canonical forms. Operator Theory, Analysis and the State Space Approach Operator Theory: Advances and Applications 271. Birkhäuser, Cham (2018), 75-117. | DOI | MR | JFM

[4] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition under zero pattern constraints and $ß{L}$-free directed graphs. Linear Algebra Appl. 621 (2021), 135-180. | DOI | MR | JFM

[5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices. Linear Algebra Appl. 305 (2000), 107-129. | DOI | MR | JFM

[6] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications 25. AMS, Providence (1967). | DOI | MR | JFM

[7] Charalambides, C. A.: Enumerative Combinatorics. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2002). | DOI | MR | JFM

[8] Habib, M., Jegou, R.: $N$-free posets as generalizations of series-parallel posets. Discrete Appl. Math. 12 (1985), 279-291. | DOI | MR | JFM

[9] Riordan, J.: Combinatorial Identities. John Wiley & Sons, New York (1968). | MR | JFM

[10] Stanley, R. P.: Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics 49. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

Cité par Sources :