Bicrossed products of generalized Taft algebra and group algebras
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 801-816
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_{m,d}(q)\bowtie k[G]$ between the generalized Taft algebra $H_{m,d}(q)$ and group algebra $k[G]$ is actually the smash product $H_{m,d}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_{m,d}(q)\bowtie k[ C_{n_1}\times C_{n_2}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group.
Let $G$ be a group generated by a set of finite order elements. We prove that any bicrossed product $H_{m,d}(q)\bowtie k[G]$ between the generalized Taft algebra $H_{m,d}(q)$ and group algebra $k[G]$ is actually the smash product $H_{m,d}(q)\sharp k[G]$. Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of $G$. As an application, the classification of $H_{m,d}(q)\bowtie k[ C_{n_1}\times C_{n_2}]$ is completely presented by generators and relations, where $C_n$ denotes the $n$-cyclic group.
DOI : 10.21136/CMJ.2022.0176-21
Classification : 16S40, 16T05
Keywords: generalized Taft algebra; factorization problem; bicrossed product
@article{10_21136_CMJ_2022_0176_21,
     author = {Wang, Dingguo and Cheng, Xiangdong and Lu, Daowei},
     title = {Bicrossed products of generalized {Taft} algebra and group algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {801--816},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0176-21},
     mrnumber = {4467943},
     zbl = {07584103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0176-21/}
}
TY  - JOUR
AU  - Wang, Dingguo
AU  - Cheng, Xiangdong
AU  - Lu, Daowei
TI  - Bicrossed products of generalized Taft algebra and group algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 801
EP  - 816
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0176-21/
DO  - 10.21136/CMJ.2022.0176-21
LA  - en
ID  - 10_21136_CMJ_2022_0176_21
ER  - 
%0 Journal Article
%A Wang, Dingguo
%A Cheng, Xiangdong
%A Lu, Daowei
%T Bicrossed products of generalized Taft algebra and group algebras
%J Czechoslovak Mathematical Journal
%D 2022
%P 801-816
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0176-21/
%R 10.21136/CMJ.2022.0176-21
%G en
%F 10_21136_CMJ_2022_0176_21
Wang, Dingguo; Cheng, Xiangdong; Lu, Daowei. Bicrossed products of generalized Taft algebra and group algebras. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 801-816. doi: 10.21136/CMJ.2022.0176-21

[1] Agore, A. L.: Classifying bicrossed products of two Taft algebras. J. Pure Appl. Algebra 222 (2018), 914-930. | DOI | MR | JFM

[2] Agore, A. L.: Hopf algebras which factorize through the Taft algebra $T_{m^2}(q)$ and the group Hopf algebra $K[C_n]$. SIGMA, Symmetry Integrability Geom. Methods Appl. 14 (2018), Article ID 027, 14 pages. | DOI | MR | JFM

[3] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264. | DOI | MR | JFM

[4] Agore, A. L., Chirvăsitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. | DOI | MR | JFM

[5] Agore, A. L., Militaru, G.: Classifying complements for Hopf algebras and Lie algebras. J. Algebra 391 (2013), 193-208. | DOI | MR | JFM

[6] Agore, A. L., Năstăsescu, L.: Bicrossed products with the Taft algebra. Arch. Math. 113 (2019), 21-36. | DOI | MR | JFM

[7] Aguiar, M., Andruskiewitsch, N.: Representations of matched pairs of groupoids and applications to weak Hopf algebras. Algebraic Structures and Their Representations Contemporary Mathematics 376 (2005), 127-173. | DOI | MR | JFM

[8] Bontea, C. G.: Classifying bicrossed products of two Sweedler's Hopf algebras. Czech. Math. J. 64 (2014), 419-431. | DOI | MR | JFM

[9] Brzeziński, T.: Deformation of algebra factorisations. Commun. Algebra 29 (2001), 737-748. | DOI | MR | JFM

[10] Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3 (2000), 19-42. | DOI | MR | JFM

[11] Chen, X.-W., Huang, H.-L., Ye, Y., Zhang, P.: Monomial Hopf algebras. J. Algebra 275 (2004), 212-232. | DOI | MR | JFM

[12] Cibils, C.: A quiver quantum group. Commun. Math. Phys. 157 (1993), 459-477. | DOI | MR | JFM

[13] Huang, H., Chen, H., Zhang, P.: Generalized Taft algebras. Algebra Colloq. 11 (2004), 313-320. | MR | JFM

[14] Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups. Algebr. Represent. Theory 18 (2015), 1267-1297. | DOI | MR | JFM

[15] Keilberg, M.: Quasitriangular structures of the double of a finite group. Commun. Algebra 46 (2018), 5146-5178. | DOI | MR | JFM

[16] Lu, D., Ning, Y., Wang, D.: The bicrossed products of $H_4$ and $H_8$. Czech. Math. J. 70 (2020), 959-977. | DOI | MR | JFM

[17] Maillet, E.: Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02. | DOI | MR

[18] Majid, S.: Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), 17-64. | DOI | MR | JFM

[19] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[20] Michor, P. W.: Knit product of graded Lie algebras and groups. Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175. | MR | JFM

[21] Radford, D. E.: On the coradical of a finite-dimensional Hopf algebra. Proc. Am. Math. Soc. 53 (1975), 9-15. | DOI | MR | JFM

[22] Taft, E. J.: The order of the antipode of a finite-dimensional Hopf algebra. Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. | DOI | MR | JFM

[23] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 (1981), 841-882. | DOI | MR | JFM

[24] Zappa, G.: Sulla costruzione dei gruppi prodotto di dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1942 (1942), 119-125 Italian. | MR | JFM

Cité par Sources :