Inequalities for real number sequences with applications in spectral graph theory
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 783-799.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $a=(a_{1},a_{2},\ldots ,a_{n})$ be a nonincreasing sequence of positive real numbers. Denote by $S=\{1,2,\ldots ,n\}$ the index set and by $J_{k}=\{I= \{ r_{1},r_{2},\ldots ,r_{k} \}$, $1\leq r_{1}$ the set of all subsets of $S$ of cardinality $k$, $1\leq k\leq n-1$. In addition, denote by $a_{I}=a_{r_{1}}+a_{r_{2}}+\cdots +a_{r_{k}}$, $1\leq k\leq n-1$, $1\leq r_{1}$, the sum of $k$ arbitrary elements of sequence $a$, where $a_{I_{1}}=a_{1}+a_{2}+\cdots +a_{k}$ and $a_{I_{n}}=a_{n-k+1}+a_{n-k+2}+\cdots +a_{n}$. We consider bounds of the quantities $RS_{k}(a)=a_{I_{1}}/a_{I_{n}}$, $LS_{k}(a)=a_{I_{1}}-a_{I_{n}}$ and $S_{k,\alpha }(a)=\sum _{I\in J_{k}}a_{I}^{\alpha }$ in terms of $A=\sum _{i=1}^{n}a_{i}$ and $B=\sum _{i=1}^{n}a_{i}^{2}$. Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.
DOI : 10.21136/CMJ.2022.0155-21
Classification : 05C30, 15A18
Keywords: inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue
@article{10_21136_CMJ_2022_0155_21,
     author = {Milovanovi\'c, Emina and Bozkurt Alt{\i}nda\u{g}, \c{S}erife Burcu and Mateji\'c, Marjan and Milovanovi\'c, Igor},
     title = {Inequalities for real number sequences with applications in spectral graph theory},
     journal = {Czechoslovak Mathematical Journal},
     pages = {783--799},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2022},
     doi = {10.21136/CMJ.2022.0155-21},
     mrnumber = {4467942},
     zbl = {07584102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/}
}
TY  - JOUR
AU  - Milovanović, Emina
AU  - Bozkurt Altındağ, Şerife Burcu
AU  - Matejić, Marjan
AU  - Milovanović, Igor
TI  - Inequalities for real number sequences with applications in spectral graph theory
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 783
EP  - 799
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/
DO  - 10.21136/CMJ.2022.0155-21
LA  - en
ID  - 10_21136_CMJ_2022_0155_21
ER  - 
%0 Journal Article
%A Milovanović, Emina
%A Bozkurt Altındağ, Şerife Burcu
%A Matejić, Marjan
%A Milovanović, Igor
%T Inequalities for real number sequences with applications in spectral graph theory
%J Czechoslovak Mathematical Journal
%D 2022
%P 783-799
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/
%R 10.21136/CMJ.2022.0155-21
%G en
%F 10_21136_CMJ_2022_0155_21
Milovanović, Emina; Bozkurt Altındağ, Şerife Burcu; Matejić, Marjan; Milovanović, Igor. Inequalities for real number sequences with applications in spectral graph theory. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 783-799. doi : 10.21136/CMJ.2022.0155-21. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/

Cité par Sources :