Keywords: inequality; real number sequence; Laplacian eigenvalue of graph; normalized Laplacian eigenvalue
@article{10_21136_CMJ_2022_0155_21,
author = {Milovanovi\'c, Emina and Bozkurt Alt{\i}nda\u{g}, \c{S}erife Burcu and Mateji\'c, Marjan and Milovanovi\'c, Igor},
title = {Inequalities for real number sequences with applications in spectral graph theory},
journal = {Czechoslovak Mathematical Journal},
pages = {783--799},
year = {2022},
volume = {72},
number = {3},
doi = {10.21136/CMJ.2022.0155-21},
mrnumber = {4467942},
zbl = {07584102},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/}
}
TY - JOUR AU - Milovanović, Emina AU - Bozkurt Altındağ, Şerife Burcu AU - Matejić, Marjan AU - Milovanović, Igor TI - Inequalities for real number sequences with applications in spectral graph theory JO - Czechoslovak Mathematical Journal PY - 2022 SP - 783 EP - 799 VL - 72 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/ DO - 10.21136/CMJ.2022.0155-21 LA - en ID - 10_21136_CMJ_2022_0155_21 ER -
%0 Journal Article %A Milovanović, Emina %A Bozkurt Altındağ, Şerife Burcu %A Matejić, Marjan %A Milovanović, Igor %T Inequalities for real number sequences with applications in spectral graph theory %J Czechoslovak Mathematical Journal %D 2022 %P 783-799 %V 72 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0155-21/ %R 10.21136/CMJ.2022.0155-21 %G en %F 10_21136_CMJ_2022_0155_21
Milovanović, Emina; Bozkurt Altındağ, Şerife Burcu; Matejić, Marjan; Milovanović, Igor. Inequalities for real number sequences with applications in spectral graph theory. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 783-799. doi: 10.21136/CMJ.2022.0155-21
[1] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread. Linear Algebra Appl. 544 (2018), 254-272. | DOI | MR | JFM
[2] Bianchi, M., Cornaro, A., Palacios, J. L., Torriero, A.: Bounds for the Kirchhoff index via majorization techniques. J. Math. Chem. 51 (2013), 569-587. | DOI | MR | JFM
[3] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis. University of California, San Diego (2008). | MR
[4] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs. Linear Algebra Appl. 433 (2010), 172-190. | DOI | MR | JFM
[5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph. Linear Algebra Appl. 505 (2016), 245-260. | DOI | MR | JFM
[6] Chen, X., Qian, J.: Bounding the sum of powers of the Laplacian eigenvalues of graphs. Appl. Math., Ser. B (Engl. Ed.) 26 (2011), 142-150. | DOI | MR | JFM
[7] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92. AMS, Providence (1997). | DOI | MR | JFM
[8] Edwards, C. S.: The largest vertex degree sum for a triangle in a graph. Bull. Lond. Math. Soc. 9 (1977), 203-208. | DOI | MR | JFM
[9] Fath-Tabar, G. H., Ashrafi, A. R.: Some remarks on Laplacian eigenvalues and Laplacian energy of graphs. Math. Commun. 15 (2010), 443-451. | MR | JFM
[10] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. | DOI | MR | JFM
[11] Grone, R., Merris, R.: The Laplacian spectrum of graph. II. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | JFM
[12] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total $\phi $-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. | DOI
[13] Hakimi-Nezhaad, M., Ashrafi, A. R.: A note on normalized Laplacian energy of graphs. J. Contemp. Math. Anal., Armen. Acad. Sci. 49 (2014), 207-211. | DOI | MR | JFM
[14] Huang, J., Li, S.: On the normalized Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs. Bul. Aust. Math. Soc. 91 (2015), 353-367. | DOI | MR | JFM
[15] Jensen, J. L. W. V.: Sur les functions convexes et les inéqualités entre les valeurs moyennes. Acta Math. 30 (1906), 175-193 French \99999JFM99999 37.0422.02. | DOI | MR
[16] Kemeny, J. G., Snell, J. L.: Finite Markov Chains. The University Series in Undergraduate Mathematics. Van Nostrand, Princeton (1960). | MR | JFM
[17] Li, J., Guo, J.-M., Shiu, W. C., ndağ, Ş. B. B. Altı, Bozkurt, D.: Bounding the sum of powers of normalized Laplacian eigenvalues of a graph. Appl. Math. Comput. 324 (2018), 82-92. | DOI | MR | JFM
[18] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | DOI | MR | JFM
[19] Milovanović, I. Ž., Milovanović, E. I., Glogić, E.: Lower bounds of the Kirchhoff and degree Kirchhoff indices. Sci. Publ. State Univ. Novi Pazar, Ser. A, Appl. Math. Inf. Mech. 7 (2015), 25-31. | DOI
[20] Milovanović, I. Ž., Milovanović, E. I., Glogić, E.: On Laplacian eigenvalues of connected graphs. Czech. Math. J. 65 (2015), 529-535. | DOI | MR | JFM
[21] Milovanović, I. Ž., Milovanović, E. I.: Bounds for the Kirchhoff and degree Kirchhoff indices. Bounds in Chemical Graph Theory: Mainstreams Mathematical Chemistry Monographs 20. University of Kragujevac, Kragujevac (2017), 93-119. | MR
[22] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis. Mathematics and Its Applications. East European Series 61. Kluwer Academic Publishers, Dorchrecht (1993). | DOI | MR | JFM
[23] Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475. | DOI | MR | JFM
[24] Nordhaus, E. A., Gaddum, J. W.: On complementary graphs. Am. Math. Mon. 63 (1956), 175-177. | DOI | MR | JFM
[25] Ozeki, N.: On the estimation of the inequalities by the maximum, or minimum values. J. College Arts Sci. Chiba Univ. 5 (1968), 199-203 Japanese. | MR
[26] Palacios, J. L.: Some inequalities for Laplacian descriptors via majorization. MATCH Commun. Math. Comput. Chem. 77 (2017), 189-194. | MR | JFM
[27] Palacios, J. L., Renom, J. M.: Broder and Karlin's formula for hitting times and the Kirchhoff index. Int. J. Quantum Chem. 111 (2011), 35-39. | DOI
[28] Shi, L.: Bounds on Randić indices. Discr. Math. 309 (2009), 5238-5241. | DOI | MR | JFM
[29] Shi, L., Wang, H.: The Laplacian incidence energy of graphs. Linear Algebra Appl. 439 (2013), 4056-4062. | DOI | MR | JFM
[30] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs. Appl. Math. Lett. 25 (2012), 1245-1250. | DOI | MR | JFM
[31] You, Z., Liu, B.: The Laplacian spread of graphs. Czech. Math. J. 62 (2012), 155-168. | DOI | MR | JFM
[32] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. | DOI | MR | JFM
[33] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis. ETH, Zürich (2005).
Cité par Sources :