On the regularity of bilinear maximal operator
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 277-295
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.
We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.
DOI : 10.21136/CMJ.2022.0153-22
Classification : 42B25, 46E35
Keywords: bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability
@article{10_21136_CMJ_2022_0153_22,
     author = {Liu, Feng and Wang, Guoru},
     title = {On the regularity of bilinear maximal operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {277--295},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0153-22},
     mrnumber = {4541102},
     zbl = {07655768},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0153-22/}
}
TY  - JOUR
AU  - Liu, Feng
AU  - Wang, Guoru
TI  - On the regularity of bilinear maximal operator
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 277
EP  - 295
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0153-22/
DO  - 10.21136/CMJ.2022.0153-22
LA  - en
ID  - 10_21136_CMJ_2022_0153_22
ER  - 
%0 Journal Article
%A Liu, Feng
%A Wang, Guoru
%T On the regularity of bilinear maximal operator
%J Czechoslovak Mathematical Journal
%D 2023
%P 277-295
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0153-22/
%R 10.21136/CMJ.2022.0153-22
%G en
%F 10_21136_CMJ_2022_0153_22
Liu, Feng; Wang, Guoru. On the regularity of bilinear maximal operator. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 277-295. doi: 10.21136/CMJ.2022.0153-22

[1] Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136 (2008), 4395-4404. | DOI | MR | JFM

[2] Federer, H., Ziemer, W. P.: The Lebesgue set of a function whose distribution derivatives are $p$-th power summable. Indiana Univ. Math. J. 22 (1972), 139-158. | DOI | MR | JFM

[3] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and The Study of Function Spaces. Regional Conference Series in Mathematics 79. AMS, Providence (1991). | DOI | MR | JFM

[4] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). | DOI | MR | JFM

[5] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson, Upper Saddle River (2004). | MR | JFM

[6] Hajłasz, P., Malý, J.: On approximate differentiability of the maximal function. Proc. Am. Math. Soc. 138 (2010), 165-174. | DOI | MR | JFM

[7] Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn., Math. 29 (2004), 167-176. | MR | JFM

[8] Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12 (2000), 233-247. | DOI | MR | JFM

[9] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | JFM

[10] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine. Angew. Math. 503 (1998), 161-167. | DOI | MR | JFM

[11] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. | DOI | MR | JFM

[12] Korry, S.: Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces. Rev. Mat. Complut. 15 (2002), 401-416. | DOI | MR | JFM

[13] Korry, S.: A class of bounded operators on Sobolev spaces. Arch. Math. 82 (2004), 40-50. | DOI | MR | JFM

[14] Lacey, M. T.: The bilinear maximal function map into $L^p$ for $2/3< p \leq 1$. Ann. Math. (2) 151 (2000), 35-57. | DOI | MR | JFM

[15] Liu, F., Liu, S., Zhang, X.: Regularity properties of bilinear maximal function and its fractional variant. Result. Math. 75 (2020), Article ID 88, 29 pages. | DOI | MR | JFM

[16] Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58 (2015), 808-817. | DOI | MR | JFM

[17] Liu, F., Wu, H.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453 (2017), 144-158. | DOI | MR | JFM

[18] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc. 135 (2007), 243-251. | DOI | MR | JFM

[19] Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of $\Bbb R^n$. Proc. Edinb. Math. Soc., II. Ser. 53 (2010), 211-237. | DOI | MR | JFM

[20] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM

[21] Whitney, H.: On totally differentiable and smooth functions. Pac. J. Math. 1 (1951), 143-159. | DOI | MR | JFM

[22] Yabuta, K.: Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl. Math., Ser. B (Engl. Ed.) 30 (2015), 418-446. | DOI | MR | JFM

Cité par Sources :