Keywords: bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability
@article{10_21136_CMJ_2022_0153_22,
author = {Liu, Feng and Wang, Guoru},
title = {On the regularity of bilinear maximal operator},
journal = {Czechoslovak Mathematical Journal},
pages = {277--295},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0153-22},
mrnumber = {4541102},
zbl = {07655768},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0153-22/}
}
TY - JOUR AU - Liu, Feng AU - Wang, Guoru TI - On the regularity of bilinear maximal operator JO - Czechoslovak Mathematical Journal PY - 2023 SP - 277 EP - 295 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0153-22/ DO - 10.21136/CMJ.2022.0153-22 LA - en ID - 10_21136_CMJ_2022_0153_22 ER -
Liu, Feng; Wang, Guoru. On the regularity of bilinear maximal operator. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 277-295. doi: 10.21136/CMJ.2022.0153-22
[1] Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136 (2008), 4395-4404. | DOI | MR | JFM
[2] Federer, H., Ziemer, W. P.: The Lebesgue set of a function whose distribution derivatives are $p$-th power summable. Indiana Univ. Math. J. 22 (1972), 139-158. | DOI | MR | JFM
[3] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and The Study of Function Spaces. Regional Conference Series in Mathematics 79. AMS, Providence (1991). | DOI | MR | JFM
[4] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). | DOI | MR | JFM
[5] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson, Upper Saddle River (2004). | MR | JFM
[6] Hajłasz, P., Malý, J.: On approximate differentiability of the maximal function. Proc. Am. Math. Soc. 138 (2010), 165-174. | DOI | MR | JFM
[7] Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn., Math. 29 (2004), 167-176. | MR | JFM
[8] Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12 (2000), 233-247. | DOI | MR | JFM
[9] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Isr. J. Math. 100 (1997), 117-124. | DOI | MR | JFM
[10] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine. Angew. Math. 503 (1998), 161-167. | DOI | MR | JFM
[11] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. | DOI | MR | JFM
[12] Korry, S.: Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces. Rev. Mat. Complut. 15 (2002), 401-416. | DOI | MR | JFM
[13] Korry, S.: A class of bounded operators on Sobolev spaces. Arch. Math. 82 (2004), 40-50. | DOI | MR | JFM
[14] Lacey, M. T.: The bilinear maximal function map into $L^p$ for $2/3< p \leq 1$. Ann. Math. (2) 151 (2000), 35-57. | DOI | MR | JFM
[15] Liu, F., Liu, S., Zhang, X.: Regularity properties of bilinear maximal function and its fractional variant. Result. Math. 75 (2020), Article ID 88, 29 pages. | DOI | MR | JFM
[16] Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58 (2015), 808-817. | DOI | MR | JFM
[17] Liu, F., Wu, H.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453 (2017), 144-158. | DOI | MR | JFM
[18] Luiro, H.: Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc. 135 (2007), 243-251. | DOI | MR | JFM
[19] Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of $\Bbb R^n$. Proc. Edinb. Math. Soc., II. Ser. 53 (2010), 211-237. | DOI | MR | JFM
[20] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM
[21] Whitney, H.: On totally differentiable and smooth functions. Pac. J. Math. 1 (1951), 143-159. | DOI | MR | JFM
[22] Yabuta, K.: Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl. Math., Ser. B (Engl. Ed.) 30 (2015), 418-446. | DOI | MR | JFM
Cité par Sources :