Quasi-tree graphs with the minimal Sombor indices
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1227-1238
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
DOI : 10.21136/CMJ.2022.0152-22
Classification : 05C07, 05C09, 05C35
Keywords: Sombor index; quasi-tree; tree
@article{10_21136_CMJ_2022_0152_22,
     author = {Li, Yibo and Liu, Huiqing and Zhang, Ruiting},
     title = {Quasi-tree graphs with the minimal {Sombor} indices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1227--1238},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0152-22},
     mrnumber = {4517610},
     zbl = {07655797},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/}
}
TY  - JOUR
AU  - Li, Yibo
AU  - Liu, Huiqing
AU  - Zhang, Ruiting
TI  - Quasi-tree graphs with the minimal Sombor indices
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1227
EP  - 1238
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/
DO  - 10.21136/CMJ.2022.0152-22
LA  - en
ID  - 10_21136_CMJ_2022_0152_22
ER  - 
%0 Journal Article
%A Li, Yibo
%A Liu, Huiqing
%A Zhang, Ruiting
%T Quasi-tree graphs with the minimal Sombor indices
%J Czechoslovak Mathematical Journal
%D 2022
%P 1227-1238
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/
%R 10.21136/CMJ.2022.0152-22
%G en
%F 10_21136_CMJ_2022_0152_22
Li, Yibo; Liu, Huiqing; Zhang, Ruiting. Quasi-tree graphs with the minimal Sombor indices. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1227-1238. doi: 10.21136/CMJ.2022.0152-22

[1] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008),\99999DOI99999 10.1007/978-1-84628-970-5 . | MR | JFM

[2] Chen, H., Li, W., Wang, J.: Extremal values on the Sombor index of trees. MATCH Commun. Math. Comput. Chem. 87 (2022), 23-49. | DOI | JFM

[3] Cruz, R., Gutman, I., Rada, J.: Sombor index of chemical graphs. Appl. Math. Comput. 399 (2021), Article ID 126018, 10 pages. | DOI | MR | JFM

[4] Cruz, R., Rada, J.: Extremal values of the Sombor index in unicyclic and bicyclic graphs. J. Math. Chem. 59 (2021), 1098-1116. | DOI | MR | JFM

[5] Cruz, R., Rada, J., Sigarreta, J. M.: Sombor index of trees with at most three branch vertices. Appl. Math. Comput. 409 (2021), Article ID 126414, 9 pages. | DOI | MR | JFM

[6] Das, K. C., Gutman, I.: On Sombor index of trees. Appl. Math. Comput. 412 (2022), Article ID 126575, 8 pages. | DOI | MR | JFM

[7] Deng, H., Tang, Z., Wu, R.: Molecular trees with extremal values of Sombor indices. Int. J. Quantum Chem. 121 (2021), Article ID e26622, 9 pages. | DOI

[8] Gutman, I.: Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16. | JFM

[9] Liu, H., Chen, H., Xiao, Q., Fang, X., Tang, Z.: More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons. Int. J. Quantum Chem. 121 (2021), Article ID e26689, 9 pages. | DOI

[10] Liu, H., Gutman, I., You, L., Huang, Y.: Sombor index: Review of extremal results and bounds. J. Math. Chem. 60 (2022), 771-798. | DOI | MR | JFM

[11] Rada, J., Rodríguez, J. M., Sigarreta, J. M.: General properties on Sombor indices. Discrete Appl. Math. 299 (2021), 87-97. | DOI | MR | JFM

[12] Réti, T., Došlić, T., Ali, A.: On the Sombor index of graphs. Contrib. Math. 3 (2021), 11-18. | DOI | MR

[13] Wang, Z., Mao, Y., Li, Y., Furtula, B.: On relations between Sombor and other degree-based indices. J. Appl. Math. Comput. 68 (2022), 1-17 \99999DOI99999 10.1007/s12190-021-01516-x . | MR | JFM

[14] Zhou, T., Lin, Z., Miao, L.: The Sombor index of trees and unicyclic graphs with given maximum degree. DML, Discrete Math. Lett. 7 (2021), 24-29. | DOI | MR

Cité par Sources :