Quasi-tree graphs with the minimal Sombor indices
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1227-1238
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
DOI :
10.21136/CMJ.2022.0152-22
Classification :
05C07, 05C09, 05C35
Keywords: Sombor index; quasi-tree; tree
Keywords: Sombor index; quasi-tree; tree
@article{10_21136_CMJ_2022_0152_22,
author = {Li, Yibo and Liu, Huiqing and Zhang, Ruiting},
title = {Quasi-tree graphs with the minimal {Sombor} indices},
journal = {Czechoslovak Mathematical Journal},
pages = {1227--1238},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0152-22},
mrnumber = {4517610},
zbl = {07655797},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/}
}
TY - JOUR AU - Li, Yibo AU - Liu, Huiqing AU - Zhang, Ruiting TI - Quasi-tree graphs with the minimal Sombor indices JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1227 EP - 1238 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/ DO - 10.21136/CMJ.2022.0152-22 LA - en ID - 10_21136_CMJ_2022_0152_22 ER -
%0 Journal Article %A Li, Yibo %A Liu, Huiqing %A Zhang, Ruiting %T Quasi-tree graphs with the minimal Sombor indices %J Czechoslovak Mathematical Journal %D 2022 %P 1227-1238 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0152-22/ %R 10.21136/CMJ.2022.0152-22 %G en %F 10_21136_CMJ_2022_0152_22
Li, Yibo; Liu, Huiqing; Zhang, Ruiting. Quasi-tree graphs with the minimal Sombor indices. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1227-1238. doi: 10.21136/CMJ.2022.0152-22
Cité par Sources :