Weighted $w$-core inverses in rings
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 581-602
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered.
DOI :
10.21136/CMJ.2022.0134-22
Classification :
06A06, 15A09, 16W10
Keywords: inverse along an element; $\{e, 1, 3\}$-inverse; ${\{f, 1, 4}\}$-inverse; weighted Moore-Penrose inverse; $(v, w)$-$(b, c)$-inverse; $w$-core inverse; dual $v$-core inverse
Keywords: inverse along an element; $\{e, 1, 3\}$-inverse; ${\{f, 1, 4}\}$-inverse; weighted Moore-Penrose inverse; $(v, w)$-$(b, c)$-inverse; $w$-core inverse; dual $v$-core inverse
@article{10_21136_CMJ_2022_0134_22,
author = {Wu, Liyun and Zhu, Huihui},
title = {Weighted $w$-core inverses in rings},
journal = {Czechoslovak Mathematical Journal},
pages = {581--602},
publisher = {mathdoc},
volume = {73},
number = {2},
year = {2023},
doi = {10.21136/CMJ.2022.0134-22},
mrnumber = {4586912},
zbl = {07729525},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0134-22/}
}
TY - JOUR AU - Wu, Liyun AU - Zhu, Huihui TI - Weighted $w$-core inverses in rings JO - Czechoslovak Mathematical Journal PY - 2023 SP - 581 EP - 602 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0134-22/ DO - 10.21136/CMJ.2022.0134-22 LA - en ID - 10_21136_CMJ_2022_0134_22 ER -
Wu, Liyun; Zhu, Huihui. Weighted $w$-core inverses in rings. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 581-602. doi: 10.21136/CMJ.2022.0134-22
Cité par Sources :