Weighted $w$-core inverses in rings
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 581-602
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered.
Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered.
DOI : 10.21136/CMJ.2022.0134-22
Classification : 06A06, 15A09, 16W10
Keywords: inverse along an element; $\{e, 1, 3\}$-inverse; ${\{f, 1, 4}\}$-inverse; weighted Moore-Penrose inverse; $(v, w)$-$(b, c)$-inverse; $w$-core inverse; dual $v$-core inverse
@article{10_21136_CMJ_2022_0134_22,
     author = {Wu, Liyun and Zhu, Huihui},
     title = {Weighted $w$-core inverses in rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--602},
     year = {2023},
     volume = {73},
     number = {2},
     doi = {10.21136/CMJ.2022.0134-22},
     mrnumber = {4586912},
     zbl = {07729525},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0134-22/}
}
TY  - JOUR
AU  - Wu, Liyun
AU  - Zhu, Huihui
TI  - Weighted $w$-core inverses in rings
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 581
EP  - 602
VL  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0134-22/
DO  - 10.21136/CMJ.2022.0134-22
LA  - en
ID  - 10_21136_CMJ_2022_0134_22
ER  - 
%0 Journal Article
%A Wu, Liyun
%A Zhu, Huihui
%T Weighted $w$-core inverses in rings
%J Czechoslovak Mathematical Journal
%D 2023
%P 581-602
%V 73
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0134-22/
%R 10.21136/CMJ.2022.0134-22
%G en
%F 10_21136_CMJ_2022_0134_22
Wu, Liyun; Zhu, Huihui. Weighted $w$-core inverses in rings. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 2, pp. 581-602. doi: 10.21136/CMJ.2022.0134-22

[1] Baksalary, O. M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58 (2010), 681-697. | DOI | MR | JFM

[2] Benítez, J., Boasso, E.: The inverse along an element in rings. Electron. J. Linear Algebra 31 (2016), 572-592. | DOI | MR | JFM

[3] Benítez, J., Boasso, E.: The inverse along an element in rings with an involution, Banach algebras and $C^*$-algebras. Linear Multilinear Algebra 65 (2017), 284-299. | DOI | MR | JFM

[4] Benítez, J., Boasso, E., Jin, H.: On one-sided $(b,c)$-inverses of arbitrary matrices. Electron. J. Linear Algebra 32 (2017), 391-422. | DOI | MR | JFM

[5] Cline, R. E.: An Application of Representation for the Generalized Inverse of a Matrix. MRC Technical Report 592. University of Wisconsin, Madison (1965).

[6] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65 (1958), 506-514. | DOI | MR | JFM

[7] Drazin, M. P.: A class of outer generalized inverses. Linear Algebra Appl. 436 (2012), 1909-1923. | DOI | MR | JFM

[8] Drazin, M. P.: Weighted $(b,c)$-inverses in categories and semigroups. Commun. Algebra 48 (2020), 1423-1438. | DOI | MR | JFM

[9] Ferreyra, D. E., Levis, F. E., Thome, N.: Revisiting the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41 (2018), 265-281. | DOI | MR | JFM

[10] Gao, Y., Chen, J.: Pseudo core inverses in rings with involution. Commun. Algebra 46 (2018), 38-50. | DOI | MR | JFM

[11] Hartwig, R. E., Luh, J.: A note on the group structure of unit regular ring elements. Pac. J. Math. 71 (1977), 449-461. | DOI | MR | JFM

[12] Jacobson, N.: The radical and semi-simplicity for arbitrary rings. Am. J. Math. 67 (1945), 300-320. | DOI | MR | JFM

[13] Li, T., Chen, J.: Characterizations of core and dual core inverses in rings with involution. Linear Multilinear Algebra 66 (2018), 717-730. | DOI | MR | JFM

[14] Malika, S. B., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226 (2014), 575-580. | DOI | MR | JFM

[15] Mary, X.: On generalized inverses and Green's relations. Linear Algebra Appl. 434 (2011), 1836-1844. | DOI | MR | JFM

[16] Mary, X., Patrício, P.: The inverse along a lower triangular matrix. Appl. Math. Comput. 219 (2012), 886-891. | DOI | MR | JFM

[17] Mary, X., Patrício, P.: Generalized inverses modulo $\mathcal H$ in semigroups and rings. Linear Multilinear Algebra 61 (2013), 1130-1135. | DOI | MR | JFM

[18] Mosić, D., Deng, C., Ma, H.: On a weighted core inverse in a ring with involution. Commun. Algebra 46 (2018), 2332-2345. | DOI | MR | JFM

[19] Mosić, D., Stanimirović, P. S., Sahoo, J. K., Behera, R., Katsikis, V. N.: One-sided weighted outer inverses of tensors. J. Comput. Appl. Math. 388 (2021), Article ID 113293, 23 pages. | DOI | MR | JFM

[20] Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51 (1955), 406-413. | DOI | MR | JFM

[21] Prasad, K. M., Bapat, R. B.: The generalized Moore-Penrose inverse. Linear Algebra Appl. 165 (1992), 59-69. | DOI | MR | JFM

[22] Prasad, K. M., Mohana, K. S.: Core-EP inverse. Linear Multilinear Algebra 62 (2014), 792-802. | DOI | MR | JFM

[23] Rakić, D. S., Dinčić, N. Č., Djordjević, D. S.: Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463 (2014), 115-133. | DOI | MR | JFM

[24] Rao, C. R., Mitra, S. K.: Generalized Inverse of a Matrices and Its Application. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1971). | MR | JFM

[25] Wang, H., Liu, X.: Characterizations of the core inverse and the core partial ordering. Linear Multilinear Algebra 63 (2015), 1829-1836. | DOI | MR | JFM

[26] Zhu, H., Wang, Q.-W.: Weighted pseudo core inverses in rings. Linear Multilinear Algebra 68 (2020), 2434-2447. | DOI | MR | JFM

[27] Zhu, H., Wang, Q.-W.: Weighted Moore-Penrose inverses and weighted core inverses in rings with involution. Chin. Ann. Math., Ser. B 42 (2021), 613-624. | DOI | MR | JFM

[28] Zhu, H., Wu, L., Chen, J.: A new class of generalized inverses in semigroups and rings with involution. (to appear) in Comm. Algebra. | DOI | MR

[29] Zhu, H., Wu, L., Mosić, D.: One-sided $w$-core inverses in rings with an involution. (to appear) in Linear Multilinear Algebra. | DOI | MR

Cité par Sources :