Remarks on Sekine quantum groups
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 695-707
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We first describe the Sekine quantum groups $\mathcal {A}_{k}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal {A}_{k}$ and describe their representation rings $r(\mathcal {A}_{k})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal {A}_{k})$.
We first describe the Sekine quantum groups $\mathcal {A}_{k}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal {A}_{k}$ and describe their representation rings $r(\mathcal {A}_{k})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal {A}_{k})$.
DOI : 10.21136/CMJ.2022.0112-21
Classification : 16D70, 16G10, 16T05
Keywords: Sekine quantum group; representation ring; Casimir number
@article{10_21136_CMJ_2022_0112_21,
     author = {Chen, Jialei and Yang, Shilin},
     title = {Remarks on {Sekine} quantum groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {695--707},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0112-21},
     mrnumber = {4467936},
     zbl = {07584096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0112-21/}
}
TY  - JOUR
AU  - Chen, Jialei
AU  - Yang, Shilin
TI  - Remarks on Sekine quantum groups
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 695
EP  - 707
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0112-21/
DO  - 10.21136/CMJ.2022.0112-21
LA  - en
ID  - 10_21136_CMJ_2022_0112_21
ER  - 
%0 Journal Article
%A Chen, Jialei
%A Yang, Shilin
%T Remarks on Sekine quantum groups
%J Czechoslovak Mathematical Journal
%D 2022
%P 695-707
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0112-21/
%R 10.21136/CMJ.2022.0112-21
%G en
%F 10_21136_CMJ_2022_0112_21
Chen, Jialei; Yang, Shilin. Remarks on Sekine quantum groups. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 695-707. doi: 10.21136/CMJ.2022.0112-21

[1] Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4 (2004), 627-654. | DOI | MR | JFM

[2] Franz, U., Skalski, A.: On idempotent states on quantum groups. J. Algebra 322 (2009), 1774-1802. | DOI | MR | JFM

[3] Kac, G. I., Paljutkin, V. G.: Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294. | MR | JFM

[4] Lorenz, M.: Some applications of Frobenius algebras to Hopf algebras. Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. | DOI | MR | JFM

[5] Sekine, Y.: An example of finite-dimensional Kac algebras of Kac-Paljutkin type. Proc. Am. Math. Soc. 124 (1996), 1139-1147. | DOI | MR | JFM

[6] Vaes, S., Vainerman, L.: Extensions of locally compact quantum groups and the bicrossed product construction. Adv. Math. 175 (2003), 1-101. | DOI | MR | JFM

[7] Wang, Z., Li, L., Zhang, Y.: A criterion for the Jacobson semisimplicity of the Green ring of a finite tensor category. Glasg. Math. J. 60 (2018), 253-272. | DOI | MR | JFM

[8] Zhang, H.: Idempotent states on Sekine quantum groups. Commun. Algebra 47 (2019), 4095-4113. | DOI | MR | JFM

Cité par Sources :