On a family of elliptic curves of rank at least 2
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 681-693
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$.
DOI :
10.21136/CMJ.2022.0106-21
Classification :
11G05, 14G05
Keywords: elliptic curve; torsion subgroup; rank
Keywords: elliptic curve; torsion subgroup; rank
@article{10_21136_CMJ_2022_0106_21,
author = {Chakraborty, Kalyan and Sharma, Richa},
title = {On a family of elliptic curves of rank at least 2},
journal = {Czechoslovak Mathematical Journal},
pages = {681--693},
publisher = {mathdoc},
volume = {72},
number = {3},
year = {2022},
doi = {10.21136/CMJ.2022.0106-21},
mrnumber = {4467935},
zbl = {07584095},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/}
}
TY - JOUR AU - Chakraborty, Kalyan AU - Sharma, Richa TI - On a family of elliptic curves of rank at least 2 JO - Czechoslovak Mathematical Journal PY - 2022 SP - 681 EP - 693 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/ DO - 10.21136/CMJ.2022.0106-21 LA - en ID - 10_21136_CMJ_2022_0106_21 ER -
%0 Journal Article %A Chakraborty, Kalyan %A Sharma, Richa %T On a family of elliptic curves of rank at least 2 %J Czechoslovak Mathematical Journal %D 2022 %P 681-693 %V 72 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/ %R 10.21136/CMJ.2022.0106-21 %G en %F 10_21136_CMJ_2022_0106_21
Chakraborty, Kalyan; Sharma, Richa. On a family of elliptic curves of rank at least 2. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 681-693. doi: 10.21136/CMJ.2022.0106-21
Cité par Sources :