On a family of elliptic curves of rank at least 2
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 681-693
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$.
Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \not \equiv 0 \pmod 3$, $m \not \equiv 0 \pmod 4$ and $m \equiv 2 \pmod {64}$ with neither $p$ nor $q$ dividing $m$.
DOI : 10.21136/CMJ.2022.0106-21
Classification : 11G05, 14G05
Keywords: elliptic curve; torsion subgroup; rank
@article{10_21136_CMJ_2022_0106_21,
     author = {Chakraborty, Kalyan and Sharma, Richa},
     title = {On a family of elliptic curves of rank at least 2},
     journal = {Czechoslovak Mathematical Journal},
     pages = {681--693},
     year = {2022},
     volume = {72},
     number = {3},
     doi = {10.21136/CMJ.2022.0106-21},
     mrnumber = {4467935},
     zbl = {07584095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/}
}
TY  - JOUR
AU  - Chakraborty, Kalyan
AU  - Sharma, Richa
TI  - On a family of elliptic curves of rank at least 2
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 681
EP  - 693
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/
DO  - 10.21136/CMJ.2022.0106-21
LA  - en
ID  - 10_21136_CMJ_2022_0106_21
ER  - 
%0 Journal Article
%A Chakraborty, Kalyan
%A Sharma, Richa
%T On a family of elliptic curves of rank at least 2
%J Czechoslovak Mathematical Journal
%D 2022
%P 681-693
%V 72
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/
%R 10.21136/CMJ.2022.0106-21
%G en
%F 10_21136_CMJ_2022_0106_21
Chakraborty, Kalyan; Sharma, Richa. On a family of elliptic curves of rank at least 2. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 681-693. doi: 10.21136/CMJ.2022.0106-21

[1] Antoniewicz, A.: On a family of elliptic curves. Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32. | MR | JFM

[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back. Am. Math. Mon. 109 (2002), 639-649. | DOI | MR | JFM

[3] Cremona, J. E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, New York (1997). | MR | JFM

[4] Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics 111. Springer, New York (2004). | DOI | MR | JFM

[5] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2= x^3-m^2 x+ p^2$. Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. | DOI | MR | JFM

[6] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. | DOI | MR | JFM

[7] Silverman, J. H., Tate, J. T.: Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer, Cham (2015). | DOI | MR | JFM

[8] Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E.: SageMath software, version 4.5.3. Available at https://www.sagemath.org/ (2010).

[9] Tadić, P.: On the family of elliptic curve $Y^2 = X^3 -T^2 X+1$. Glas. Mat., III. Ser. 47 (2012), 81-93. | DOI | MR | JFM

[10] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2= X^3 - X + T^2$. Ann. Math. Inform. 40 (2012), 145-153. | MR | JFM

Cité par Sources :