Keywords: elliptic curve; torsion subgroup; rank
@article{10_21136_CMJ_2022_0106_21,
author = {Chakraborty, Kalyan and Sharma, Richa},
title = {On a family of elliptic curves of rank at least 2},
journal = {Czechoslovak Mathematical Journal},
pages = {681--693},
year = {2022},
volume = {72},
number = {3},
doi = {10.21136/CMJ.2022.0106-21},
mrnumber = {4467935},
zbl = {07584095},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/}
}
TY - JOUR AU - Chakraborty, Kalyan AU - Sharma, Richa TI - On a family of elliptic curves of rank at least 2 JO - Czechoslovak Mathematical Journal PY - 2022 SP - 681 EP - 693 VL - 72 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/ DO - 10.21136/CMJ.2022.0106-21 LA - en ID - 10_21136_CMJ_2022_0106_21 ER -
%0 Journal Article %A Chakraborty, Kalyan %A Sharma, Richa %T On a family of elliptic curves of rank at least 2 %J Czechoslovak Mathematical Journal %D 2022 %P 681-693 %V 72 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0106-21/ %R 10.21136/CMJ.2022.0106-21 %G en %F 10_21136_CMJ_2022_0106_21
Chakraborty, Kalyan; Sharma, Richa. On a family of elliptic curves of rank at least 2. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 3, pp. 681-693. doi: 10.21136/CMJ.2022.0106-21
[1] Antoniewicz, A.: On a family of elliptic curves. Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32. | MR | JFM
[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back. Am. Math. Mon. 109 (2002), 639-649. | DOI | MR | JFM
[3] Cremona, J. E.: Algorithms for Modular Elliptic Curves. Cambridge University Press, New York (1997). | MR | JFM
[4] Husemöller, D.: Elliptic Curves. Graduate Texts in Mathematics 111. Springer, New York (2004). | DOI | MR | JFM
[5] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2= x^3-m^2 x+ p^2$. Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. | DOI | MR | JFM
[6] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. | DOI | MR | JFM
[7] Silverman, J. H., Tate, J. T.: Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer, Cham (2015). | DOI | MR | JFM
[8] Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E.: SageMath software, version 4.5.3. Available at https://www.sagemath.org/ (2010).
[9] Tadić, P.: On the family of elliptic curve $Y^2 = X^3 -T^2 X+1$. Glas. Mat., III. Ser. 47 (2012), 81-93. | DOI | MR | JFM
[10] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2= X^3 - X + T^2$. Ann. Math. Inform. 40 (2012), 145-153. | MR | JFM
Cité par Sources :