On $n$-submodules and $G.n$-submodules
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 245-262
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt {{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of \hbox {$G.n$-submodule}, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other.
We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt {{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of \hbox {$G.n$-submodule}, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other.
DOI : 10.21136/CMJ.2022.0094-22
Classification : 13C13, 16D10
Keywords: $n$-ideal; $n$-submodule; primary submodule
@article{10_21136_CMJ_2022_0094_22,
     author = {Karimzadeh, Somayeh and Moghaderi, Javad},
     title = {On $n$-submodules and $G.n$-submodules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {245--262},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0094-22},
     mrnumber = {4541100},
     zbl = {07655766},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0094-22/}
}
TY  - JOUR
AU  - Karimzadeh, Somayeh
AU  - Moghaderi, Javad
TI  - On $n$-submodules and $G.n$-submodules
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 245
EP  - 262
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0094-22/
DO  - 10.21136/CMJ.2022.0094-22
LA  - en
ID  - 10_21136_CMJ_2022_0094_22
ER  - 
%0 Journal Article
%A Karimzadeh, Somayeh
%A Moghaderi, Javad
%T On $n$-submodules and $G.n$-submodules
%J Czechoslovak Mathematical Journal
%D 2023
%P 245-262
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0094-22/
%R 10.21136/CMJ.2022.0094-22
%G en
%F 10_21136_CMJ_2022_0094_22
Karimzadeh, Somayeh; Moghaderi, Javad. On $n$-submodules and $G.n$-submodules. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 245-262. doi: 10.21136/CMJ.2022.0094-22

[1] Ahmadi, M., Moghaderi, J.: $n$-submodules. Iran. J. Math. Sci. Inform. 17 (2022), 177-190. | DOI | MR | JFM

[2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules. Taiwanese J. Math. 11 (2007), 1189-1201. | DOI | MR | JFM

[3] Atiyah, M. F., Macdonald, I. G.: An Introduction to Commutative Algebra. Addision-Wesley, Reading (1969). | MR | JFM

[4] Barnard, A.: Multiplication modules. J. Algebra 71 (1981), 174-178. | DOI | MR | JFM

[5] El-Bast, Z. A., Smith, P. F.: Multiplication modules. Commun. Algebra 16 (1988), 755-779. | DOI | MR | JFM

[6] Abdullah, N. Khalid: Irreducible submoduls and strongly irreducible submodules. Tikrit J. Pure Sci. 17 (2012), 219-224.

[7] Koç, S., Tekir, Ü.: $r$-submodules and $sr$-submodules. Turk. J. Math. 42 (2018), 1863-1876. | DOI | MR | JFM

[8] Lu, C.: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1984), 61-69. | MR | JFM

[9] Macdonald, I. G.: Secondary representation of modules over a commutative ring. Convegno di Algebra Commutativa Symposia Mathematica 11. Academic Press, London (1973), 23-43. | MR | JFM

[10] McCasland, R. L., Moore, M. E.: Prime submodules. Commun. Algebra 20 (1992), 1803-1817. | DOI | MR | JFM

[11] McCasland, R. L., Moore, M. E., Smith, P. F.: On the spectrum of a module over commutative ring. Commun. Algebra 25 (1997), 79-103. | DOI | MR | JFM

[12] Mohamadian, R.: $r$-ideals in commutative rings. Turk. J. Math. 39 (2015), 733-749. | DOI | MR | JFM

[13] Moore, M. E., Smith, S. J.: Prime and radical submodules of modules over commutative rings. Commun. Algebra 30 (2002), 5037-5064. | DOI | MR | JFM

[14] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. | DOI | MR | JFM

Cité par Sources :