Keywords: finite abelian group; isolated subgroup; sum of element orders
@article{10_21136_CMJ_2022_0085_21,
author = {T\u{a}rn\u{a}uceanu, Marius},
title = {Isolated subgroups of finite abelian groups},
journal = {Czechoslovak Mathematical Journal},
pages = {615--620},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2022.0085-21},
mrnumber = {4412778},
zbl = {07547223},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0085-21/}
}
TY - JOUR AU - Tărnăuceanu, Marius TI - Isolated subgroups of finite abelian groups JO - Czechoslovak Mathematical Journal PY - 2022 SP - 615 EP - 620 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0085-21/ DO - 10.21136/CMJ.2022.0085-21 LA - en ID - 10_21136_CMJ_2022_0085_21 ER -
Tărnăuceanu, Marius. Isolated subgroups of finite abelian groups. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 615-620. doi: 10.21136/CMJ.2022.0085-21
[1] Amiri, H., Amiri, S. M. Jafarian, Isaacs, I. M.: Sums of element orders in finite groups. Commun. Algebra 37 (2009), 2978-2980. | DOI | MR | JFM
[2] Busarkin, V. M.: The structure of isolated subgroups in finite groups. Algebra Logika 4 (1965), 33-50 Russian. | MR | JFM
[3] Busarkin, V. M.: Groups containing isolated subgroups. Sib. Math. J. 9 (1968), 560-563. | DOI | MR | JFM
[4] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. American Mathematical Society, Providence (2008). | DOI | MR | JFM
[5] Isolated subgroup. Encyclopedia of Mathematics. Available at https://encyclopediaofmath.org/wiki/Isolated subgroup.
[6] Janko, Z.: Finite $p$-groups with some isolated subgroups. J. Algebra 465 (2016), 41-61. | DOI | MR | JFM
[7] Kurosh, A. G.: The Theory of Groups. Volume I, II. Chelsea Publishing, New York (1960). | MR | JFM
[8] Suzuki, M.: Group Theory. I. Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). | MR | JFM
[9] Tărnăuceanu, M.: A generalization of a result on the sum of element orders of a finite group. Math. Slovaca 71 (2021), 627-630. | DOI | MR | JFM
[10] Tărnăuceanu, M., Fodor, D. G.: On the sum of element orders of finite Abelian groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 60 (2014), 1-7. | DOI | MR | JFM
Cité par Sources :