Keywords: numerical radius; operator norm; mixed Schwarz inequality
@article{10_21136_CMJ_2022_0068_21,
author = {Heydarbeygi, Zahra and Sababheh, Mohammad and Moradi, Hamid},
title = {A convex treatment of numerical radius inequalities},
journal = {Czechoslovak Mathematical Journal},
pages = {601--614},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2022.0068-21},
mrnumber = {4412777},
zbl = {07547222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/}
}
TY - JOUR AU - Heydarbeygi, Zahra AU - Sababheh, Mohammad AU - Moradi, Hamid TI - A convex treatment of numerical radius inequalities JO - Czechoslovak Mathematical Journal PY - 2022 SP - 601 EP - 614 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/ DO - 10.21136/CMJ.2022.0068-21 LA - en ID - 10_21136_CMJ_2022_0068_21 ER -
%0 Journal Article %A Heydarbeygi, Zahra %A Sababheh, Mohammad %A Moradi, Hamid %T A convex treatment of numerical radius inequalities %J Czechoslovak Mathematical Journal %D 2022 %P 601-614 %V 72 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/ %R 10.21136/CMJ.2022.0068-21 %G en %F 10_21136_CMJ_2022_0068_21
Heydarbeygi, Zahra; Sababheh, Mohammad; Moradi, Hamid. A convex treatment of numerical radius inequalities. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 601-614. doi: 10.21136/CMJ.2022.0068-21
[1] Abu-Omar, A., Kittaneh, F.: A generalization of the numerical radius. Linear Algebra Appl. 569 (2019), 323-334. | DOI | MR | JFM
[2] Aujla, J. S., Silva, F. C.: Weak majorization inequalities and convex functions. Linear Algebra Appl. 369 (2003), 217-233. | DOI | MR | JFM
[3] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint numerical ranges of operators in semi- Hilbertian spaces. Linear Algebra Appl. 555 (2018), 266-284. | DOI | MR | JFM
[4] Bhunia, P., Bhanja, A., Bag, S., Paul, K.: Bounds for the Davis-Wielandt radius of bounded linear operators. Ann. Funct. Anal. 12 (2021), Article ID 18, 23 pages. | DOI | MR | JFM
[5] Bhunia, P., Paul, K., Nayak, R. K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Math. Inequal. Appl. 24 (2021), 167-183. | DOI | MR | JFM
[6] Buzano, M. L.: Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Semin. Mat., Torino Italian 31 (1974), 405-409. | MR | JFM
[7] Dragomir, S. S.: Some refinements of Schwartz inequality. Proceedings of the Symposium of Mathematics and Its Applications Timişoara Research Centre of the Romanian Academy, Timişoara (1986), 13-16. | JFM
[8] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5 (2009), 269-278. | MR | JFM
[9] Dragomir, S. S.: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. SpringerBriefs in Mathematics. Springer, Cham (2013). | DOI | MR | JFM
[10] El-Haddad, M., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 182 (2007), 133-140. | DOI | MR | JFM
[11] Halmos, P. R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19. Springer, New York (1982). | DOI | MR | JFM
[12] Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158 (2003), 11-17. | DOI | MR | JFM
[13] Kittaneh, F.: Norm inequalities for sums and differences of positive operators. Linear Algebra Appl. 383 (2004), 85-91. | DOI | MR | JFM
[14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168 (2005), 73-80. | DOI | MR | JFM
[15] Moradi, H. R., Sababheh, M.: More accurate numerical radius inequalities. II. Linear Multilinear Algebra 69 (2021), 921-933. | DOI | MR | JFM
[16] Omidvar, M. E., Moradi, H. R., Shebrawi, K.: Sharpening some classical numerical radius inequalities. Oper. Matrices 12 (2018), 407-416. | DOI | MR | JFM
[17] Pečarić, J., Furuta, T., Hot, J. Mićić, Seo, Y.: Mond-Pečarić Method in Operator Inequalities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Monographs in Inequalities 1. Element, Zagreb (2005). | MR | JFM
[18] Sababheh, M.: Numerical radius inequalities via convexity. Linear Algebra Appl. 549 (2018), 67-78. | DOI | MR | JFM
[19] Sababheh, M.: Heinz-type numerical radii inequalities. Linear Multilinear Algebra 67 (2019), 953-964. | DOI | MR | JFM
[20] Sababheh, M., Moradi, H. R.: More accurate numerical radius inequalities. I. Linear Multilinear Algebra 69 (2021), 1964-1973. | DOI | MR | JFM
[21] Zamani, A.: $A$-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578 (2019), 159-183. | DOI | MR | JFM
[22] Zamani, A., Moslehian, M. S., Xu, Q., Fu, C.: Numerical radius inequalities concerning with algebra norms. Mediterr. J. Math. 18 (2021), Article ID 38, 13 pages. | DOI | MR | JFM
Cité par Sources :