A convex treatment of numerical radius inequalities
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 601-614
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such versions.
We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such versions.
DOI : 10.21136/CMJ.2022.0068-21
Classification : 15A60, 47A12, 47A30
Keywords: numerical radius; operator norm; mixed Schwarz inequality
@article{10_21136_CMJ_2022_0068_21,
     author = {Heydarbeygi, Zahra and Sababheh, Mohammad and Moradi, Hamid},
     title = {A convex treatment of numerical radius inequalities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {601--614},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2022.0068-21},
     mrnumber = {4412777},
     zbl = {07547222},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/}
}
TY  - JOUR
AU  - Heydarbeygi, Zahra
AU  - Sababheh, Mohammad
AU  - Moradi, Hamid
TI  - A convex treatment of numerical radius inequalities
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 601
EP  - 614
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/
DO  - 10.21136/CMJ.2022.0068-21
LA  - en
ID  - 10_21136_CMJ_2022_0068_21
ER  - 
%0 Journal Article
%A Heydarbeygi, Zahra
%A Sababheh, Mohammad
%A Moradi, Hamid
%T A convex treatment of numerical radius inequalities
%J Czechoslovak Mathematical Journal
%D 2022
%P 601-614
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0068-21/
%R 10.21136/CMJ.2022.0068-21
%G en
%F 10_21136_CMJ_2022_0068_21
Heydarbeygi, Zahra; Sababheh, Mohammad; Moradi, Hamid. A convex treatment of numerical radius inequalities. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 601-614. doi: 10.21136/CMJ.2022.0068-21

[1] Abu-Omar, A., Kittaneh, F.: A generalization of the numerical radius. Linear Algebra Appl. 569 (2019), 323-334. | DOI | MR | JFM

[2] Aujla, J. S., Silva, F. C.: Weak majorization inequalities and convex functions. Linear Algebra Appl. 369 (2003), 217-233. | DOI | MR | JFM

[3] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint numerical ranges of operators in semi- Hilbertian spaces. Linear Algebra Appl. 555 (2018), 266-284. | DOI | MR | JFM

[4] Bhunia, P., Bhanja, A., Bag, S., Paul, K.: Bounds for the Davis-Wielandt radius of bounded linear operators. Ann. Funct. Anal. 12 (2021), Article ID 18, 23 pages. | DOI | MR | JFM

[5] Bhunia, P., Paul, K., Nayak, R. K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Math. Inequal. Appl. 24 (2021), 167-183. | DOI | MR | JFM

[6] Buzano, M. L.: Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Semin. Mat., Torino Italian 31 (1974), 405-409. | MR | JFM

[7] Dragomir, S. S.: Some refinements of Schwartz inequality. Proceedings of the Symposium of Mathematics and Its Applications Timişoara Research Centre of the Romanian Academy, Timişoara (1986), 13-16. | JFM

[8] Dragomir, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5 (2009), 269-278. | MR | JFM

[9] Dragomir, S. S.: Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. SpringerBriefs in Mathematics. Springer, Cham (2013). | DOI | MR | JFM

[10] El-Haddad, M., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 182 (2007), 133-140. | DOI | MR | JFM

[11] Halmos, P. R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19. Springer, New York (1982). | DOI | MR | JFM

[12] Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158 (2003), 11-17. | DOI | MR | JFM

[13] Kittaneh, F.: Norm inequalities for sums and differences of positive operators. Linear Algebra Appl. 383 (2004), 85-91. | DOI | MR | JFM

[14] Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. Stud. Math. 168 (2005), 73-80. | DOI | MR | JFM

[15] Moradi, H. R., Sababheh, M.: More accurate numerical radius inequalities. II. Linear Multilinear Algebra 69 (2021), 921-933. | DOI | MR | JFM

[16] Omidvar, M. E., Moradi, H. R., Shebrawi, K.: Sharpening some classical numerical radius inequalities. Oper. Matrices 12 (2018), 407-416. | DOI | MR | JFM

[17] Pečarić, J., Furuta, T., Hot, J. Mićić, Seo, Y.: Mond-Pečarić Method in Operator Inequalities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Monographs in Inequalities 1. Element, Zagreb (2005). | MR | JFM

[18] Sababheh, M.: Numerical radius inequalities via convexity. Linear Algebra Appl. 549 (2018), 67-78. | DOI | MR | JFM

[19] Sababheh, M.: Heinz-type numerical radii inequalities. Linear Multilinear Algebra 67 (2019), 953-964. | DOI | MR | JFM

[20] Sababheh, M., Moradi, H. R.: More accurate numerical radius inequalities. I. Linear Multilinear Algebra 69 (2021), 1964-1973. | DOI | MR | JFM

[21] Zamani, A.: $A$-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578 (2019), 159-183. | DOI | MR | JFM

[22] Zamani, A., Moslehian, M. S., Xu, Q., Fu, C.: Numerical radius inequalities concerning with algebra norms. Mediterr. J. Math. 18 (2021), Article ID 38, 13 pages. | DOI | MR | JFM

Cité par Sources :