Keywords: hyperbolic geometry; hyperbolic metric; intrinsic geometry; Möbius metric; quasiregular mapping; triangular ratio metric
@article{10_21136_CMJ_2022_0050_22,
author = {Rainio, Oona and Vuorinen, Matti},
title = {M\"obius metric in sector domains},
journal = {Czechoslovak Mathematical Journal},
pages = {213--236},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0050-22},
mrnumber = {4541098},
zbl = {07655764},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/}
}
TY - JOUR AU - Rainio, Oona AU - Vuorinen, Matti TI - Möbius metric in sector domains JO - Czechoslovak Mathematical Journal PY - 2023 SP - 213 EP - 236 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/ DO - 10.21136/CMJ.2022.0050-22 LA - en ID - 10_21136_CMJ_2022_0050_22 ER -
Rainio, Oona; Vuorinen, Matti. Möbius metric in sector domains. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 213-236. doi: 10.21136/CMJ.2022.0050-22
[1] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. | DOI | MR | JFM
[2] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk. Mathematical Surveys and Monographs 184. AMS, Providence (2012). | DOI | MR | JFM
[3] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979), 50-74. | DOI | MR | JFM
[4] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains. J. Anal. Math. 30 (1976), 172-199. | DOI | MR | JFM
[5] Hariri, P., Klén, R., Vuorinen, M.: Local convexity of metric balls. Monatsh. Math. 186 (2018), 281-298. | DOI | MR | JFM
[6] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham (2020). | DOI | MR | JFM
[7] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47 (2017), 1121-1148. | DOI | MR | JFM
[8] Hästö, P.: A new weighted metric: The relative metric. I. J. Math. Anal. Appl. 274 (2002), 38-58. | DOI | MR | JFM
[9] Hästö, P., Ibragimov, Z., Minda, D., Ponnusamy, S., Swadesh, S.: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis. In the Tradition of Ahlfors-Bers. IV Contemporary Mathematics 432. AMS, Providence (2007), 63-74. | DOI | MR | JFM
[10] Lindén, H.: Quasihyperbolic geodesics and uniformity in elementary domains. Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005), 50 pages. | MR | JFM
[11] Nasser, M. M. S., Rainio, O., Vuorinen, M.: Condenser capacity and hyperbolic perimeter. Comput. Math. Appl. 105 (2022), 54-74. | DOI | MR | JFM
[12] Rainio, O.: Intrinsic quasi-metrics. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 2873-2891. | DOI | MR | JFM
[13] Rainio, O., Vuorinen, M.: Introducing a new intrinsic metric. Result. Math. 77 (2022), Article ID 71, 18 pages. | DOI | MR | JFM
[14] Rainio, O., Vuorinen, M.: Triangular ratio metric under quasiconformal mappings in sector domains. To appear in Comput. Methods Funct. Theory (2022). | DOI | MR
[15] Seittenranta, P.: Möbius-invariant metrics. Math. Proc. Camb. Philos. Soc. 125 (1999), 511-533. | DOI | MR | JFM
[16] Väisälä, J.: Lectures on $n$-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics 229. Springer, Berlin (1971). | DOI | MR | JFM
[17] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer, Berlin (1988). | DOI | MR | JFM
Cité par Sources :