Möbius metric in sector domains
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 213-236.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
DOI : 10.21136/CMJ.2022.0050-22
Classification : 30C62, 51M10
Keywords: hyperbolic geometry; hyperbolic metric; intrinsic geometry; Möbius metric; quasiregular mapping; triangular ratio metric
@article{10_21136_CMJ_2022_0050_22,
     author = {Rainio, Oona and Vuorinen, Matti},
     title = {M\"obius metric in sector domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--236},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.21136/CMJ.2022.0050-22},
     mrnumber = {4541098},
     zbl = {07655764},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/}
}
TY  - JOUR
AU  - Rainio, Oona
AU  - Vuorinen, Matti
TI  - Möbius metric in sector domains
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 213
EP  - 236
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/
DO  - 10.21136/CMJ.2022.0050-22
LA  - en
ID  - 10_21136_CMJ_2022_0050_22
ER  - 
%0 Journal Article
%A Rainio, Oona
%A Vuorinen, Matti
%T Möbius metric in sector domains
%J Czechoslovak Mathematical Journal
%D 2023
%P 213-236
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/
%R 10.21136/CMJ.2022.0050-22
%G en
%F 10_21136_CMJ_2022_0050_22
Rainio, Oona; Vuorinen, Matti. Möbius metric in sector domains. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 213-236. doi : 10.21136/CMJ.2022.0050-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/

Cité par Sources :