Möbius metric in sector domains
Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 213-236
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
The Möbius metric $\delta _G$ is studied in the cases, where its domain $G$ is an open sector of the complex plane. We introduce upper and lower bounds for this metric in terms of the hyperbolic metric and the angle of the sector, and then use these results to find bounds for the distortion of the Möbius metric under quasiregular mappings defined in sector domains. Furthermore, we numerically study the Möbius metric and its connection to the hyperbolic metric in polygon domains.
DOI : 10.21136/CMJ.2022.0050-22
Classification : 30C62, 51M10
Keywords: hyperbolic geometry; hyperbolic metric; intrinsic geometry; Möbius metric; quasiregular mapping; triangular ratio metric
@article{10_21136_CMJ_2022_0050_22,
     author = {Rainio, Oona and Vuorinen, Matti},
     title = {M\"obius metric in sector domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {213--236},
     year = {2023},
     volume = {73},
     number = {1},
     doi = {10.21136/CMJ.2022.0050-22},
     mrnumber = {4541098},
     zbl = {07655764},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/}
}
TY  - JOUR
AU  - Rainio, Oona
AU  - Vuorinen, Matti
TI  - Möbius metric in sector domains
JO  - Czechoslovak Mathematical Journal
PY  - 2023
SP  - 213
EP  - 236
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/
DO  - 10.21136/CMJ.2022.0050-22
LA  - en
ID  - 10_21136_CMJ_2022_0050_22
ER  - 
%0 Journal Article
%A Rainio, Oona
%A Vuorinen, Matti
%T Möbius metric in sector domains
%J Czechoslovak Mathematical Journal
%D 2023
%P 213-236
%V 73
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0050-22/
%R 10.21136/CMJ.2022.0050-22
%G en
%F 10_21136_CMJ_2022_0050_22
Rainio, Oona; Vuorinen, Matti. Möbius metric in sector domains. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 213-236. doi: 10.21136/CMJ.2022.0050-22

[1] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal maps. Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. | DOI | MR | JFM

[2] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk. Mathematical Surveys and Monographs 184. AMS, Providence (2012). | DOI | MR | JFM

[3] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979), 50-74. | DOI | MR | JFM

[4] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains. J. Anal. Math. 30 (1976), 172-199. | DOI | MR | JFM

[5] Hariri, P., Klén, R., Vuorinen, M.: Local convexity of metric balls. Monatsh. Math. 186 (2018), 281-298. | DOI | MR | JFM

[6] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham (2020). | DOI | MR | JFM

[7] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47 (2017), 1121-1148. | DOI | MR | JFM

[8] Hästö, P.: A new weighted metric: The relative metric. I. J. Math. Anal. Appl. 274 (2002), 38-58. | DOI | MR | JFM

[9] Hästö, P., Ibragimov, Z., Minda, D., Ponnusamy, S., Swadesh, S.: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis. In the Tradition of Ahlfors-Bers. IV Contemporary Mathematics 432. AMS, Providence (2007), 63-74. | DOI | MR | JFM

[10] Lindén, H.: Quasihyperbolic geodesics and uniformity in elementary domains. Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005), 50 pages. | MR | JFM

[11] Nasser, M. M. S., Rainio, O., Vuorinen, M.: Condenser capacity and hyperbolic perimeter. Comput. Math. Appl. 105 (2022), 54-74. | DOI | MR | JFM

[12] Rainio, O.: Intrinsic quasi-metrics. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 2873-2891. | DOI | MR | JFM

[13] Rainio, O., Vuorinen, M.: Introducing a new intrinsic metric. Result. Math. 77 (2022), Article ID 71, 18 pages. | DOI | MR | JFM

[14] Rainio, O., Vuorinen, M.: Triangular ratio metric under quasiconformal mappings in sector domains. To appear in Comput. Methods Funct. Theory (2022). | DOI | MR

[15] Seittenranta, P.: Möbius-invariant metrics. Math. Proc. Camb. Philos. Soc. 125 (1999), 511-533. | DOI | MR | JFM

[16] Väisälä, J.: Lectures on $n$-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics 229. Springer, Berlin (1971). | DOI | MR | JFM

[17] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer, Berlin (1988). | DOI | MR | JFM

Cité par Sources :