Keywords: greatest common divisor; natural density; Piatetski-Shapiro sequence
@article{10_21136_CMJ_2022_0044_22,
author = {Pimsert, Watcharapon and Srichan, Teerapat and Tangsupphathawat, Pinthira},
title = {Coprimality of integers in {Piatetski-Shapiro} sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {197--212},
year = {2023},
volume = {73},
number = {1},
doi = {10.21136/CMJ.2022.0044-22},
mrnumber = {4541097},
zbl = {07655763},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0044-22/}
}
TY - JOUR AU - Pimsert, Watcharapon AU - Srichan, Teerapat AU - Tangsupphathawat, Pinthira TI - Coprimality of integers in Piatetski-Shapiro sequences JO - Czechoslovak Mathematical Journal PY - 2023 SP - 197 EP - 212 VL - 73 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0044-22/ DO - 10.21136/CMJ.2022.0044-22 LA - en ID - 10_21136_CMJ_2022_0044_22 ER -
%0 Journal Article %A Pimsert, Watcharapon %A Srichan, Teerapat %A Tangsupphathawat, Pinthira %T Coprimality of integers in Piatetski-Shapiro sequences %J Czechoslovak Mathematical Journal %D 2023 %P 197-212 %V 73 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0044-22/ %R 10.21136/CMJ.2022.0044-22 %G en %F 10_21136_CMJ_2022_0044_22
Pimsert, Watcharapon; Srichan, Teerapat; Tangsupphathawat, Pinthira. Coprimality of integers in Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, Tome 73 (2023) no. 1, pp. 197-212. doi: 10.21136/CMJ.2022.0044-22
[1] Bergelson, V., Richter, F. K.: On the density of coprime tuples of the form $(n, \lfloor f_1(n) \rfloor, \dots ,\lfloor f_k(n) \rfloor)$, where $f_1, \dots , f_k$ are functions from a Hardy field. Number Theory: Diophantine Problems, Uniform Distribution and Applications Springer, Cham (2017), 109-135. | DOI | MR | JFM
[2] Cesàro, E.: Étude moyenne di plus grand commun diviseur de deux nombres. Ann. Mat. (2) 13 (1885), 235-250 French \99999JFM99999 17.0144.05. | DOI
[3] Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres. Ann. Mat. (2) 13 (1885), 291-294 French \99999JFM99999 17.0145.01. | DOI
[4] Cohen, E.: Arithmetical functions of a greatest common divisor. I. Proc. Am. Math. Soc. 11 (1960), 164-171. | DOI | MR | JFM
[5] Delmer, F., Deshouillers, J.-M.: On the probability that $n$ and $[n^c]$ are coprime. Period. Math. Hung. 45 (2002), 15-20. | DOI | MR | JFM
[6] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences. Hardy-Ramanujan J. 41 (2018), 127-132. | MR | JFM
[7] Diaconis, P., Erdős, P.: On the distribution of the greatest common divisor. A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes - Monograph Series 45. Institute of Mathematical Statistics, Beachwood (2004), 56-61. | DOI | MR | JFM
[8] Dirichlet, G. L.: Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abh. König. Preuss. Akad. Wiss. (1849), 69-83 German. | DOI
[9] Fernández, J. L., Fernández, P.: Asymptotic normality and greatest common divisors. Int. J. Number Theory 11 (2015), 89-126. | DOI | MR | JFM
[10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008). | MR | JFM
[11] Lambek, J., Moser, L.: On integers $n$ relatively prime to $f(n)$. Can. J. Math. 7 (1955), 155-158. | DOI | MR | JFM
[12] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N. Ser. 33 (1953), 559-566. | MR | JFM
Cité par Sources :