Certain additive decompositions in a noncommutative ring
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1217-1226
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left (\smallmatrix 0\lambda \\ 1\mu \endsmallmatrix \right )$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.
DOI :
10.21136/CMJ.2022.0039-22
Classification :
15A09, 16E50, 16U60
Keywords: idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
Keywords: idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
@article{10_21136_CMJ_2022_0039_22,
author = {Chen, Huanyin and Sheibani, Marjan and Bahmani, Rahman},
title = {Certain additive decompositions in a noncommutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {1217--1226},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2022},
doi = {10.21136/CMJ.2022.0039-22},
mrnumber = {4517609},
zbl = {07655796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/}
}
TY - JOUR AU - Chen, Huanyin AU - Sheibani, Marjan AU - Bahmani, Rahman TI - Certain additive decompositions in a noncommutative ring JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1217 EP - 1226 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/ DO - 10.21136/CMJ.2022.0039-22 LA - en ID - 10_21136_CMJ_2022_0039_22 ER -
%0 Journal Article %A Chen, Huanyin %A Sheibani, Marjan %A Bahmani, Rahman %T Certain additive decompositions in a noncommutative ring %J Czechoslovak Mathematical Journal %D 2022 %P 1217-1226 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/ %R 10.21136/CMJ.2022.0039-22 %G en %F 10_21136_CMJ_2022_0039_22
Chen, Huanyin; Sheibani, Marjan; Bahmani, Rahman. Certain additive decompositions in a noncommutative ring. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1217-1226. doi: 10.21136/CMJ.2022.0039-22
Cité par Sources :