Certain additive decompositions in a noncommutative ring
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1217-1226
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left (\smallmatrix 0\lambda \\ 1\mu \endsmallmatrix \right )$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.
We determine when an element in a noncommutative ring is the sum of an idempotent and a radical element that commute. We prove that a $2\times 2$ matrix $A$ over a projective-free ring $R$ is strongly $J$-clean if and only if $A\in J (M_2(R))$, or $I_2-A\in J(M_2(R))$, or $A$ is similar to $\left (\smallmatrix 0\lambda \\ 1\mu \endsmallmatrix \right )$, where $\lambda \in J(R)$, $\mu \in 1+J(R)$, and the equation $x^2-x\mu -\lambda =0$ has a root in $J(R)$ and a root in $1+J(R)$. We further prove that $f(x)\in R[[x]]$ is strongly $J$-clean if $f(0)\in R$ be optimally $J$-clean.
DOI : 10.21136/CMJ.2022.0039-22
Classification : 15A09, 16E50, 16U60
Keywords: idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
@article{10_21136_CMJ_2022_0039_22,
     author = {Chen, Huanyin and Sheibani, Marjan and Bahmani, Rahman},
     title = {Certain additive decompositions in a noncommutative ring},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1217--1226},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0039-22},
     mrnumber = {4517609},
     zbl = {07655796},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/}
}
TY  - JOUR
AU  - Chen, Huanyin
AU  - Sheibani, Marjan
AU  - Bahmani, Rahman
TI  - Certain additive decompositions in a noncommutative ring
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1217
EP  - 1226
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/
DO  - 10.21136/CMJ.2022.0039-22
LA  - en
ID  - 10_21136_CMJ_2022_0039_22
ER  - 
%0 Journal Article
%A Chen, Huanyin
%A Sheibani, Marjan
%A Bahmani, Rahman
%T Certain additive decompositions in a noncommutative ring
%J Czechoslovak Mathematical Journal
%D 2022
%P 1217-1226
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/
%R 10.21136/CMJ.2022.0039-22
%G en
%F 10_21136_CMJ_2022_0039_22
Chen, Huanyin; Sheibani, Marjan; Bahmani, Rahman. Certain additive decompositions in a noncommutative ring. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1217-1226. doi: 10.21136/CMJ.2022.0039-22

[1] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Commun. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM

[2] Ashrafi, N., Nasibi, E.: Strongly $J$-clean group rings. Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 14 (2013), 9-12. | MR | JFM

[3] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | DOI | MR | JFM

[4] Chen, H.: Strongly $J$-clean matrices over local rings. Commun. Algebra 40 (2012), 1352-1362. | DOI | MR | JFM

[5] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422. | DOI | MR | JFM

[6] Diesl, A. J., Dorsey, T. J.: Strongly clean matrices over arbitrary rings. J. Algebra 399 (2014), 854-869. | DOI | MR | JFM

[7] Dorsey, T. J.: Cleanness and Strong Cleanness of Rings of Matrices: Ph.D. Thesis. University of California, Berkeley (2006). | MR

[8] Fan, L., Yang, X.: A note on strongly clean matrix rings. Commun. Algebra 38 (2010), 799-806. | DOI | MR | JFM

[9] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings whose elements are the sum of a tripotent and an element from the Jacobson radical. Can. Math. Bull. 62 (2019), 810-821. | DOI | MR | JFM

[10] Shifflet, D. R.: Optimally Clean Rings: Ph.D. Thesis. Bowling Green State University, Bowling Green (2011). | MR

[12] Yang, X., Zhou, Y.: Strong cleanness of the $2\times 2$ matrix ring over a general local ring. J. Algebra 320 (2008), 2280-2290. | DOI | MR | JFM

[13] Zhu, H., Zou, H., Patrício, P.: Generalized inverses and their relations with clean decompositions. J. Algebra Appl. 18 (2019), Article ID 1950133, 9 pages. | DOI | MR | JFM

Cité par Sources :