Keywords: idempotent matrix; nilpotent matrix; projective-free ring; quadratic equation; power series
@article{10_21136_CMJ_2022_0039_22,
author = {Chen, Huanyin and Sheibani, Marjan and Bahmani, Rahman},
title = {Certain additive decompositions in a noncommutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {1217--1226},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0039-22},
mrnumber = {4517609},
zbl = {07655796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/}
}
TY - JOUR AU - Chen, Huanyin AU - Sheibani, Marjan AU - Bahmani, Rahman TI - Certain additive decompositions in a noncommutative ring JO - Czechoslovak Mathematical Journal PY - 2022 SP - 1217 EP - 1226 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/ DO - 10.21136/CMJ.2022.0039-22 LA - en ID - 10_21136_CMJ_2022_0039_22 ER -
%0 Journal Article %A Chen, Huanyin %A Sheibani, Marjan %A Bahmani, Rahman %T Certain additive decompositions in a noncommutative ring %J Czechoslovak Mathematical Journal %D 2022 %P 1217-1226 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0039-22/ %R 10.21136/CMJ.2022.0039-22 %G en %F 10_21136_CMJ_2022_0039_22
Chen, Huanyin; Sheibani, Marjan; Bahmani, Rahman. Certain additive decompositions in a noncommutative ring. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1217-1226. doi: 10.21136/CMJ.2022.0039-22
[1] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Commun. Algebra 30 (2002), 3327-3336. | DOI | MR | JFM
[2] Ashrafi, N., Nasibi, E.: Strongly $J$-clean group rings. Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 14 (2013), 9-12. | MR | JFM
[3] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). | DOI | MR | JFM
[4] Chen, H.: Strongly $J$-clean matrices over local rings. Commun. Algebra 40 (2012), 1352-1362. | DOI | MR | JFM
[5] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422. | DOI | MR | JFM
[6] Diesl, A. J., Dorsey, T. J.: Strongly clean matrices over arbitrary rings. J. Algebra 399 (2014), 854-869. | DOI | MR | JFM
[7] Dorsey, T. J.: Cleanness and Strong Cleanness of Rings of Matrices: Ph.D. Thesis. University of California, Berkeley (2006). | MR
[8] Fan, L., Yang, X.: A note on strongly clean matrix rings. Commun. Algebra 38 (2010), 799-806. | DOI | MR | JFM
[9] Koşan, M. T., Yildirim, T., Zhou, Y.: Rings whose elements are the sum of a tripotent and an element from the Jacobson radical. Can. Math. Bull. 62 (2019), 810-821. | DOI | MR | JFM
[10] Shifflet, D. R.: Optimally Clean Rings: Ph.D. Thesis. Bowling Green State University, Bowling Green (2011). | MR
[12] Yang, X., Zhou, Y.: Strong cleanness of the $2\times 2$ matrix ring over a general local ring. J. Algebra 320 (2008), 2280-2290. | DOI | MR | JFM
[13] Zhu, H., Zou, H., Patrício, P.: Generalized inverses and their relations with clean decompositions. J. Algebra Appl. 18 (2019), Article ID 1950133, 9 pages. | DOI | MR | JFM
Cité par Sources :