Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1205-1216
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb {R}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
We study weighted mixed norm spaces of harmonic functions defined on smoothly bounded domains in $\mathbb {R}^n$. Our principal result is a characterization of Carleson measures for these spaces. First, we obtain an equivalence of norms on these spaces. Then we give a necessary and sufficient condition for the embedding of the weighted harmonic mixed norm space into the corresponding mixed norm space.
DOI : 10.21136/CMJ.2022.0018-22
Classification : 31B05, 42B35
Keywords: harmonic function; mixed norm space; Carleson measure
@article{10_21136_CMJ_2022_0018_22,
     author = {Savkovi\'c, Ivana},
     title = {Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1205--1216},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0018-22},
     mrnumber = {4517608},
     zbl = {07655795},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/}
}
TY  - JOUR
AU  - Savković, Ivana
TI  - Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1205
EP  - 1216
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/
DO  - 10.21136/CMJ.2022.0018-22
LA  - en
ID  - 10_21136_CMJ_2022_0018_22
ER  - 
%0 Journal Article
%A Savković, Ivana
%T Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
%J Czechoslovak Mathematical Journal
%D 2022
%P 1205-1216
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/
%R 10.21136/CMJ.2022.0018-22
%G en
%F 10_21136_CMJ_2022_0018_22
Savković, Ivana. Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1205-1216. doi: 10.21136/CMJ.2022.0018-22

[1] Arsenović, M., Jovanović, T.: Embedding of harmonic mixed norm spaces on smoothly bounded domains in $\mathbb{R}^n$. Open Math. 17 (2019), 1260-1268. | DOI | MR

[2] Arsenović, M., Shamoyan, R. F.: On embeddings, traces and multipliers in harmonic function spaces. Kragujevac J. Math. 37 (2013), 45-64. | MR | JFM

[3] Calzi, M., Peloso, M. M.: Carleson and reverse Carleson measures on homogeneous Siegel domains. Available at , 40 pages. | arXiv | MR

[4] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces. Nagoya Math. J. 174 (2004), 165-186. | DOI | MR | JFM

[5] Engliš, M.: Boundary singularity of Poisson and harmonic Bergman kernels. J. Math. Anal. Appl. 429 (2015), 233-272. | DOI | MR | JFM

[6] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM

[7] Hu, Z.: Estimate for the integral mean of harmonic functions on bounded domains in $\mathbb{R}^n$. Sci. China, Ser. A 38 (1995), 36-46. | MR | JFM

[8] Hu, Z., Lv, X.: Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators. Chin. Ann. Math., Ser. B 34 (2013), 623-638. | DOI | MR | JFM

[9] Jovanović, T.: On Carleson-type embeddings for Bergman spaces of harmonic functions. Anal. Math. 44 (2018), 493-499. | DOI | MR | JFM

[10] Kang, H., Koo, H.: Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal. 185 (2001), 220-239. | DOI | MR | JFM

[11] Keshavarzi, H.: Characterization of forward, vanishing and reverse Bergman Carleson measures using sparse domination. Available at , 23 pages. | arXiv

[12] Nam, K., Park, I.: Volume integral means of harmonic functions on smooth boundary domains. Bull. Korean Math. Soc. 51 (2014), 1195-1204. | DOI | MR | JFM

[13] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | JFM

[14] Tong, C., Li, J.: Carleson measures on the weighted Bergman spaces with Békollé weights. Chin. Ann. Math., Ser. B 42 (2021), 583-600. | DOI | MR | JFM

Cité par Sources :