Keywords: harmonic function; mixed norm space; Carleson measure
@article{10_21136_CMJ_2022_0018_22,
author = {Savkovi\'c, Ivana},
title = {Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$},
journal = {Czechoslovak Mathematical Journal},
pages = {1205--1216},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0018-22},
mrnumber = {4517608},
zbl = {07655795},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/}
}
TY - JOUR
AU - Savković, Ivana
TI - Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
JO - Czechoslovak Mathematical Journal
PY - 2022
SP - 1205
EP - 1216
VL - 72
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/
DO - 10.21136/CMJ.2022.0018-22
LA - en
ID - 10_21136_CMJ_2022_0018_22
ER -
%0 Journal Article
%A Savković, Ivana
%T Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$
%J Czechoslovak Mathematical Journal
%D 2022
%P 1205-1216
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0018-22/
%R 10.21136/CMJ.2022.0018-22
%G en
%F 10_21136_CMJ_2022_0018_22
Savković, Ivana. Carleson measures for weighted harmonic mixed norm spaces on bounded domains in $\mathbb {R}^n$. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1205-1216. doi: 10.21136/CMJ.2022.0018-22
[1] Arsenović, M., Jovanović, T.: Embedding of harmonic mixed norm spaces on smoothly bounded domains in $\mathbb{R}^n$. Open Math. 17 (2019), 1260-1268. | DOI | MR
[2] Arsenović, M., Shamoyan, R. F.: On embeddings, traces and multipliers in harmonic function spaces. Kragujevac J. Math. 37 (2013), 45-64. | MR | JFM
[3] Calzi, M., Peloso, M. M.: Carleson and reverse Carleson measures on homogeneous Siegel domains. Available at , 40 pages. | arXiv | MR
[4] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces. Nagoya Math. J. 174 (2004), 165-186. | DOI | MR | JFM
[5] Engliš, M.: Boundary singularity of Poisson and harmonic Bergman kernels. J. Math. Anal. Appl. 429 (2015), 233-272. | DOI | MR | JFM
[6] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM
[7] Hu, Z.: Estimate for the integral mean of harmonic functions on bounded domains in $\mathbb{R}^n$. Sci. China, Ser. A 38 (1995), 36-46. | MR | JFM
[8] Hu, Z., Lv, X.: Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators. Chin. Ann. Math., Ser. B 34 (2013), 623-638. | DOI | MR | JFM
[9] Jovanović, T.: On Carleson-type embeddings for Bergman spaces of harmonic functions. Anal. Math. 44 (2018), 493-499. | DOI | MR | JFM
[10] Kang, H., Koo, H.: Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal. 185 (2001), 220-239. | DOI | MR | JFM
[11] Keshavarzi, H.: Characterization of forward, vanishing and reverse Bergman Carleson measures using sparse domination. Available at , 23 pages. | arXiv
[12] Nam, K., Park, I.: Volume integral means of harmonic functions on smooth boundary domains. Bull. Korean Math. Soc. 51 (2014), 1195-1204. | DOI | MR | JFM
[13] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | JFM
[14] Tong, C., Li, J.: Carleson measures on the weighted Bergman spaces with Békollé weights. Chin. Ann. Math., Ser. B 42 (2021), 583-600. | DOI | MR | JFM
Cité par Sources :