On the classification of $3$-dimensional $F$-manifold algebras
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1191-1204
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

$F$-manifold algebras are focused on the algebraic properties of the tangent sheaf of $F$-manifolds. The local classification of 3-dimensional $F$-manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional $F$-manifold algebras over the complex field $\mathbb {C}$.
$F$-manifold algebras are focused on the algebraic properties of the tangent sheaf of $F$-manifolds. The local classification of 3-dimensional $F$-manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional $F$-manifold algebras over the complex field $\mathbb {C}$.
DOI : 10.21136/CMJ.2022.0017-22
Classification : 17A30, 17B60
Keywords: $F$-manifold; Poisson algebra; $F$-manifold algebra
@article{10_21136_CMJ_2022_0017_22,
     author = {Chen, Zhiqi and Li, Jifu and Ding, Ming},
     title = {On the classification of $3$-dimensional  $F$-manifold algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1191--1204},
     year = {2022},
     volume = {72},
     number = {4},
     doi = {10.21136/CMJ.2022.0017-22},
     mrnumber = {4517607},
     zbl = {07655794},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/}
}
TY  - JOUR
AU  - Chen, Zhiqi
AU  - Li, Jifu
AU  - Ding, Ming
TI  - On the classification of $3$-dimensional  $F$-manifold algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1191
EP  - 1204
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/
DO  - 10.21136/CMJ.2022.0017-22
LA  - en
ID  - 10_21136_CMJ_2022_0017_22
ER  - 
%0 Journal Article
%A Chen, Zhiqi
%A Li, Jifu
%A Ding, Ming
%T On the classification of $3$-dimensional  $F$-manifold algebras
%J Czechoslovak Mathematical Journal
%D 2022
%P 1191-1204
%V 72
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/
%R 10.21136/CMJ.2022.0017-22
%G en
%F 10_21136_CMJ_2022_0017_22
Chen, Zhiqi; Li, Jifu; Ding, Ming. On the classification of $3$-dimensional  $F$-manifold algebras. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1191-1204. doi: 10.21136/CMJ.2022.0017-22

[1] Bai, C., Meng, D.: The classification of Novikov algebras in low dimensions. J. Phys. A, Math. Gen. 34 (2001), 1581-1594. | DOI | MR | JFM

[2] Basalaev, A., Hertling, C.: 3-dimensional $F$-manifolds. Lett. Math. Phys. 111 (2021), Article ID 90, 50 pages. | DOI | MR | JFM

[3] Hassine, A. Ben, Chtioui, T., Maalaoui, M. A., Mabrouk, S.: On Hom-$F$-manifold algebras and quantization. Available at , 23 pages. | arXiv | MR

[4] Morales, J. A. Cruz, Gutierrez, J. A., Torres-Gomez, A.: $F$-algebra-Rinehart pairs and super $F$-algebroids. Available at , 14 pages. | arXiv | MR

[5] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994). | MR | JFM

[6] Ding, M., Chen, Z., Li, J.: $F$-manifold color algebras. Available at , 13 pages. | arXiv

[7] Dotsenko, V.: Algebraic structures of $F$-manifolds via pre-Lie algebras. Ann. Mat. Pura Appl. (4) 198 (2019), 517-527. | DOI | MR | JFM

[8] Dubrovin, B.: Geometry of 2D topological field theories. Integrable Systems and Quantum Groups Lecture Notes in Mathematics 1620. Springer, Berlin (1996), 120-348. | DOI | MR | JFM

[9] Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics 129. Springer, New York (1991). | DOI | MR | JFM

[10] Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge Tracts in Mathematics 151. Cambridge University Press, Cambridge (2002). | DOI | MR | JFM

[11] Hertling, C., Manin, Y.: Weak Frobenius manifolds. Int. Math. Res. Not. 1999 (1999), 277-286. | DOI | MR | JFM

[12] Liu, J., Bai, C., Sheng, Y.: Noncommutative Poisson bialgebras. J. Algebra 556 (2020), 35-66. | DOI | MR | JFM

[13] Liu, J., Sheng, Y., Bai, C.: $F$-manifold algebras and deformation quantization via pre-Lie algebras. J. Algebra 559 (2020), 467-495. | DOI | MR | JFM

[14] Ni, X., Bai, C.: Poisson bialgebras. J. Math. Phys. 54 (2013), Article ID 023515, 14 pages. | DOI | MR | JFM

[15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986-994. | DOI | MR | JFM

[16] Šnobl, L., Winternitz, P.: Classification and Identification of Lie Algebras. CRM Monograph Series 33. AMS, Providence (2014). | DOI | MR | JFM

[17] Uchino, K.: Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators. Lett. Math. Phys. 85 (2008), 91-109. | DOI | MR | JFM

Cité par Sources :