On the classification of $3$-dimensional $F$-manifold algebras
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1191-1204.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

$F$-manifold algebras are focused on the algebraic properties of the tangent sheaf of $F$-manifolds. The local classification of 3-dimensional $F$-manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional $F$-manifold algebras over the complex field $\mathbb {C}$.
DOI : 10.21136/CMJ.2022.0017-22
Classification : 17A30, 17B60
Keywords: $F$-manifold; Poisson algebra; $F$-manifold algebra
@article{10_21136_CMJ_2022_0017_22,
     author = {Chen, Zhiqi and Li, Jifu and Ding, Ming},
     title = {On the classification of $3$-dimensional  $F$-manifold algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1191--1204},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0017-22},
     mrnumber = {4517607},
     zbl = {07655794},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/}
}
TY  - JOUR
AU  - Chen, Zhiqi
AU  - Li, Jifu
AU  - Ding, Ming
TI  - On the classification of $3$-dimensional  $F$-manifold algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1191
EP  - 1204
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/
DO  - 10.21136/CMJ.2022.0017-22
LA  - en
ID  - 10_21136_CMJ_2022_0017_22
ER  - 
%0 Journal Article
%A Chen, Zhiqi
%A Li, Jifu
%A Ding, Ming
%T On the classification of $3$-dimensional  $F$-manifold algebras
%J Czechoslovak Mathematical Journal
%D 2022
%P 1191-1204
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/
%R 10.21136/CMJ.2022.0017-22
%G en
%F 10_21136_CMJ_2022_0017_22
Chen, Zhiqi; Li, Jifu; Ding, Ming. On the classification of $3$-dimensional  $F$-manifold algebras. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 1191-1204. doi : 10.21136/CMJ.2022.0017-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0017-22/

Cité par Sources :