Unimodular rows over Laurent polynomial rings
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 927-934
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\geq 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\geq 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
DOI :
10.21136/CMJ.2022.0002-20
Classification :
03F65, 13C10, 14Q20, 19A13
Keywords: Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
Keywords: Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
@article{10_21136_CMJ_2022_0002_20,
author = {Mnif, Abdessalem and Amidou, Morou},
title = {Unimodular rows over {Laurent} polynomial rings},
journal = {Czechoslovak Mathematical Journal},
pages = {927--934},
year = {2022},
volume = {72},
number = {4},
doi = {10.21136/CMJ.2022.0002-20},
mrnumber = {4517585},
zbl = {07655772},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/}
}
TY - JOUR AU - Mnif, Abdessalem AU - Amidou, Morou TI - Unimodular rows over Laurent polynomial rings JO - Czechoslovak Mathematical Journal PY - 2022 SP - 927 EP - 934 VL - 72 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/ DO - 10.21136/CMJ.2022.0002-20 LA - en ID - 10_21136_CMJ_2022_0002_20 ER -
%0 Journal Article %A Mnif, Abdessalem %A Amidou, Morou %T Unimodular rows over Laurent polynomial rings %J Czechoslovak Mathematical Journal %D 2022 %P 927-934 %V 72 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/ %R 10.21136/CMJ.2022.0002-20 %G en %F 10_21136_CMJ_2022_0002_20
Mnif, Abdessalem; Amidou, Morou. Unimodular rows over Laurent polynomial rings. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 927-934. doi: 10.21136/CMJ.2022.0002-20
Cité par Sources :