Unimodular rows over Laurent polynomial rings
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 927-934.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\geq 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
DOI : 10.21136/CMJ.2022.0002-20
Classification : 03F65, 13C10, 14Q20, 19A13
Keywords: Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
@article{10_21136_CMJ_2022_0002_20,
     author = {Mnif, Abdessalem and Amidou, Morou},
     title = {Unimodular rows over {Laurent} polynomial rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {927--934},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2022},
     doi = {10.21136/CMJ.2022.0002-20},
     mrnumber = {4517585},
     zbl = {07655772},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/}
}
TY  - JOUR
AU  - Mnif, Abdessalem
AU  - Amidou, Morou
TI  - Unimodular rows over Laurent polynomial rings
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 927
EP  - 934
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/
DO  - 10.21136/CMJ.2022.0002-20
LA  - en
ID  - 10_21136_CMJ_2022_0002_20
ER  - 
%0 Journal Article
%A Mnif, Abdessalem
%A Amidou, Morou
%T Unimodular rows over Laurent polynomial rings
%J Czechoslovak Mathematical Journal
%D 2022
%P 927-934
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/
%R 10.21136/CMJ.2022.0002-20
%G en
%F 10_21136_CMJ_2022_0002_20
Mnif, Abdessalem; Amidou, Morou. Unimodular rows over Laurent polynomial rings. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 4, pp. 927-934. doi : 10.21136/CMJ.2022.0002-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2022.0002-20/

Cité par Sources :