On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 449-459
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let ${\mathbb T}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \| (1/n) T'_n \|_{p} \leq \| T_n \|_{p}$ for $0 \leq p \leq \infty $ and $T_n \in {\mathbb T}_n$. We derive the multivariate version of the result of Golitschek and Lorentz $$ \Bigl \| \Bigl | T_n \cos \alpha + \frac {1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \|_{p} \leq \| T_n \|_{p}, \quad 0 \leq p \leq \infty $$ for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
Let ${\mathbb T}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \| (1/n) T'_n \|_{p} \leq \| T_n \|_{p}$ for $0 \leq p \leq \infty $ and $T_n \in {\mathbb T}_n$. We derive the multivariate version of the result of Golitschek and Lorentz $$ \Bigl \| \Bigl | T_n \cos \alpha + \frac {1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \|_{p} \leq \| T_n \|_{p}, \quad 0 \leq p \leq \infty $$ for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
DOI : 10.21136/CMJ.2021.0531-20
Classification : 41A10, 41A17
Keywords: univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
@article{10_21136_CMJ_2021_0531_20,
     author = {Zhu, Laiyi and Zhao, Xingjun},
     title = {On {Bernstein} inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {449--459},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2021.0531-20},
     mrnumber = {4412769},
     zbl = {07547214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/}
}
TY  - JOUR
AU  - Zhu, Laiyi
AU  - Zhao, Xingjun
TI  - On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 449
EP  - 459
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
DO  - 10.21136/CMJ.2021.0531-20
LA  - en
ID  - 10_21136_CMJ_2021_0531_20
ER  - 
%0 Journal Article
%A Zhu, Laiyi
%A Zhao, Xingjun
%T On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
%J Czechoslovak Mathematical Journal
%D 2022
%P 449-459
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
%R 10.21136/CMJ.2021.0531-20
%G en
%F 10_21136_CMJ_2021_0531_20
Zhu, Laiyi; Zhao, Xingjun. On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 449-459. doi: 10.21136/CMJ.2021.0531-20

[1] Arestov, V. V.: On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 1981 3-22. | DOI | MR | JFM

[2] Conway, J. B.: Functions of One Complex Variable II. Graduate Texts in Mathematics 159. Springer, New York (1995). | DOI | MR | JFM

[3] Golitschek, M. V., Lorentz, G. G.: Bernstein inequalities in $L_p$, $0 \leq p \leq \infty$. Rocky Mt. J. Math. 19 (1989), 145-156. | DOI | MR | JFM

[4] Rahman, Q. I., Schmeisser, G.: Les inégalités de Markoff et de Bernstein. Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 86. Les Presses de l'Université de Montréal, Montréal (1983), French. | MR | JFM

[5] Tung, S. H.: Bernstein's theorem for the polydisc. Proc. Am. Math. Soc. 85 (1982), 73-76. | DOI | MR | JFM

[6] Zygmund, A.: A remark on conjugate series. Proc. Lond. Math. Soc., II. Ser. 34 (1932), 392-400. | DOI | MR | JFM

Cité par Sources :