Keywords: univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
@article{10_21136_CMJ_2021_0531_20,
author = {Zhu, Laiyi and Zhao, Xingjun},
title = {On {Bernstein} inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $},
journal = {Czechoslovak Mathematical Journal},
pages = {449--459},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2021.0531-20},
mrnumber = {4412769},
zbl = {07547214},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/}
}
TY - JOUR
AU - Zhu, Laiyi
AU - Zhao, Xingjun
TI - On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
JO - Czechoslovak Mathematical Journal
PY - 2022
SP - 449
EP - 459
VL - 72
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
DO - 10.21136/CMJ.2021.0531-20
LA - en
ID - 10_21136_CMJ_2021_0531_20
ER -
%0 Journal Article
%A Zhu, Laiyi
%A Zhao, Xingjun
%T On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
%J Czechoslovak Mathematical Journal
%D 2022
%P 449-459
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
%R 10.21136/CMJ.2021.0531-20
%G en
%F 10_21136_CMJ_2021_0531_20
Zhu, Laiyi; Zhao, Xingjun. On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 449-459. doi: 10.21136/CMJ.2021.0531-20
[1] Arestov, V. V.: On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 1981 3-22. | DOI | MR | JFM
[2] Conway, J. B.: Functions of One Complex Variable II. Graduate Texts in Mathematics 159. Springer, New York (1995). | DOI | MR | JFM
[3] Golitschek, M. V., Lorentz, G. G.: Bernstein inequalities in $L_p$, $0 \leq p \leq \infty$. Rocky Mt. J. Math. 19 (1989), 145-156. | DOI | MR | JFM
[4] Rahman, Q. I., Schmeisser, G.: Les inégalités de Markoff et de Bernstein. Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 86. Les Presses de l'Université de Montréal, Montréal (1983), French. | MR | JFM
[5] Tung, S. H.: Bernstein's theorem for the polydisc. Proc. Am. Math. Soc. 85 (1982), 73-76. | DOI | MR | JFM
[6] Zygmund, A.: A remark on conjugate series. Proc. Lond. Math. Soc., II. Ser. 34 (1932), 392-400. | DOI | MR | JFM
Cité par Sources :