On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 449-459
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let ${\mathbb T}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \| (1/n) T'_n \|_{p} \leq \| T_n \|_{p}$ for $0 \leq p \leq \infty $ and $T_n \in {\mathbb T}_n$. We derive the multivariate version of the result of Golitschek and Lorentz $$ \Bigl \| \Bigl | T_n \cos \alpha + \frac {1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \|_{p} \leq \| T_n \|_{p}, \quad 0 \leq p \leq \infty $$ for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
DOI :
10.21136/CMJ.2021.0531-20
Classification :
41A10, 41A17
Keywords: univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
Keywords: univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
@article{10_21136_CMJ_2021_0531_20,
author = {Zhu, Laiyi and Zhao, Xingjun},
title = {On {Bernstein} inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $},
journal = {Czechoslovak Mathematical Journal},
pages = {449--459},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2022},
doi = {10.21136/CMJ.2021.0531-20},
mrnumber = {4412769},
zbl = {07547214},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/}
}
TY - JOUR
AU - Zhu, Laiyi
AU - Zhao, Xingjun
TI - On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
JO - Czechoslovak Mathematical Journal
PY - 2022
SP - 449
EP - 459
VL - 72
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
DO - 10.21136/CMJ.2021.0531-20
LA - en
ID - 10_21136_CMJ_2021_0531_20
ER -
%0 Journal Article
%A Zhu, Laiyi
%A Zhao, Xingjun
%T On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $
%J Czechoslovak Mathematical Journal
%D 2022
%P 449-459
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0531-20/
%R 10.21136/CMJ.2021.0531-20
%G en
%F 10_21136_CMJ_2021_0531_20
Zhu, Laiyi; Zhao, Xingjun. On Bernstein inequalities for multivariate trigonometric polynomials in $L_{p}$, $0\leq p\leq \infty $. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 449-459. doi: 10.21136/CMJ.2021.0531-20
Cité par Sources :