On the Choquet integrals associated to Bessel capacities
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 433-447
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
DOI : 10.21136/CMJ.2021.0525-20
Classification : 31C15, 42B25
Keywords: Choquet integral; Bessel capacity; Hardy-Littlewood maximal function
@article{10_21136_CMJ_2021_0525_20,
     author = {Ooi, Keng Hao},
     title = {On the {Choquet} integrals associated to {Bessel} capacities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {433--447},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2021.0525-20},
     mrnumber = {4412768},
     zbl = {07547213},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/}
}
TY  - JOUR
AU  - Ooi, Keng Hao
TI  - On the Choquet integrals associated to Bessel capacities
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 433
EP  - 447
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/
DO  - 10.21136/CMJ.2021.0525-20
LA  - en
ID  - 10_21136_CMJ_2021_0525_20
ER  - 
%0 Journal Article
%A Ooi, Keng Hao
%T On the Choquet integrals associated to Bessel capacities
%J Czechoslovak Mathematical Journal
%D 2022
%P 433-447
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/
%R 10.21136/CMJ.2021.0525-20
%G en
%F 10_21136_CMJ_2021_0525_20
Ooi, Keng Hao. On the Choquet integrals associated to Bessel capacities. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 433-447. doi: 10.21136/CMJ.2021.0525-20

[1] Adams, D. R.: Quasi-additivity and sets of finite $L^p$-capacity. Pac. J. Math. 79 (1978), 283-291. | DOI | MR | JFM

[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). | DOI | MR | JFM

[3] Dinculeanu, N.: Integration on Locally Compact Spaces. Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leiden (1974). | MR | JFM

[4] Grigor'yan, A., Verbitsky, I.: Pointwise estimates of solutions to nonlinear equations for nonlocal operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 20 (2020), 721-750. | DOI | MR | JFM

[5] Kalton, N. J., Verbitsky, I. E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math. Soc. 351 (1999), 3441-3497. | DOI | MR | JFM

[6] Maz'ya, V. G.: Sobolev Spaces: With Applications To Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 342. Springer, Berlin (2011). | DOI | MR | JFM

[7] Maz'ya, V. G., Shaposhnikova, T. O.: Theory of Sobolev Multipliers: With Applications To Differential and Integral Operators. Grundlehren der Mathematischen Wissenschaften 337. Springer, Berlin (2009). | DOI | MR | JFM

[8] Maz'ya, V. G., Verbitsky, I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33 (1995), 81-115. | DOI | MR | JFM

[9] Ooi, K. H., Phuc, N. C.: Characterizations of predual spaces to a class of Sobolev multiplier type spaces. Available at , 46 pages. | arXiv | MR

[10] Ooi, K. H., Phuc, N. C.: On a capacitary strong type inequality and related capacitary estimates. Available at , 12 pages. | arXiv | MR

Cité par Sources :