Keywords: Choquet integral; Bessel capacity; Hardy-Littlewood maximal function
@article{10_21136_CMJ_2021_0525_20,
author = {Ooi, Keng Hao},
title = {On the {Choquet} integrals associated to {Bessel} capacities},
journal = {Czechoslovak Mathematical Journal},
pages = {433--447},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2021.0525-20},
mrnumber = {4412768},
zbl = {07547213},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/}
}
TY - JOUR AU - Ooi, Keng Hao TI - On the Choquet integrals associated to Bessel capacities JO - Czechoslovak Mathematical Journal PY - 2022 SP - 433 EP - 447 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/ DO - 10.21136/CMJ.2021.0525-20 LA - en ID - 10_21136_CMJ_2021_0525_20 ER -
Ooi, Keng Hao. On the Choquet integrals associated to Bessel capacities. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 433-447. doi: 10.21136/CMJ.2021.0525-20
[1] Adams, D. R.: Quasi-additivity and sets of finite $L^p$-capacity. Pac. J. Math. 79 (1978), 283-291. | DOI | MR | JFM
[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). | DOI | MR | JFM
[3] Dinculeanu, N.: Integration on Locally Compact Spaces. Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leiden (1974). | MR | JFM
[4] Grigor'yan, A., Verbitsky, I.: Pointwise estimates of solutions to nonlinear equations for nonlocal operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 20 (2020), 721-750. | DOI | MR | JFM
[5] Kalton, N. J., Verbitsky, I. E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math. Soc. 351 (1999), 3441-3497. | DOI | MR | JFM
[6] Maz'ya, V. G.: Sobolev Spaces: With Applications To Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 342. Springer, Berlin (2011). | DOI | MR | JFM
[7] Maz'ya, V. G., Shaposhnikova, T. O.: Theory of Sobolev Multipliers: With Applications To Differential and Integral Operators. Grundlehren der Mathematischen Wissenschaften 337. Springer, Berlin (2009). | DOI | MR | JFM
[8] Maz'ya, V. G., Verbitsky, I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33 (1995), 81-115. | DOI | MR | JFM
[9] Ooi, K. H., Phuc, N. C.: Characterizations of predual spaces to a class of Sobolev multiplier type spaces. Available at , 46 pages. | arXiv | MR
[10] Ooi, K. H., Phuc, N. C.: On a capacitary strong type inequality and related capacitary estimates. Available at , 12 pages. | arXiv | MR
Cité par Sources :