On the Choquet integrals associated to Bessel capacities
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 433-447
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
DOI :
10.21136/CMJ.2021.0525-20
Classification :
31C15, 42B25
Keywords: Choquet integral; Bessel capacity; Hardy-Littlewood maximal function
Keywords: Choquet integral; Bessel capacity; Hardy-Littlewood maximal function
@article{10_21136_CMJ_2021_0525_20,
author = {Ooi, Keng Hao},
title = {On the {Choquet} integrals associated to {Bessel} capacities},
journal = {Czechoslovak Mathematical Journal},
pages = {433--447},
year = {2022},
volume = {72},
number = {2},
doi = {10.21136/CMJ.2021.0525-20},
mrnumber = {4412768},
zbl = {07547213},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/}
}
TY - JOUR AU - Ooi, Keng Hao TI - On the Choquet integrals associated to Bessel capacities JO - Czechoslovak Mathematical Journal PY - 2022 SP - 433 EP - 447 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0525-20/ DO - 10.21136/CMJ.2021.0525-20 LA - en ID - 10_21136_CMJ_2021_0525_20 ER -
Ooi, Keng Hao. On the Choquet integrals associated to Bessel capacities. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 433-447. doi: 10.21136/CMJ.2021.0525-20
Cité par Sources :