Prime ideal factorization in a number field via Newton polygons
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 529-543
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb Z[X]$ and $\mathbb Z_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$, where $\bar {F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb F_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$. We further specify for every prime ideal of $\mathbb Z_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.
Let $K$ be a number field defined by an irreducible polynomial $F(X)\in \mathbb Z[X]$ and $\mathbb Z_K$ its ring of integers. For every prime integer $p$, we give sufficient and necessary conditions on $F(X)$ that guarantee the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$, where $\bar {F}(X)$ factors into powers of $r$ monic irreducible polynomials in $\mathbb F_p[X]$. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly $r$ prime ideals of $\mathbb Z_K$ lying above $p$. We further specify for every prime ideal of $\mathbb Z_K$ lying above $p$, the ramification index, the residue degree, and a $p$-generator.
DOI : 10.21136/CMJ.2021.0516-19
Classification : 11S05, 11Y05, 11Y40
Keywords: prime factorization; valuation; $\phi $-expansion; Newton polygon
@article{10_21136_CMJ_2021_0516_19,
     author = {El Fadil, Lhoussain},
     title = {Prime ideal factorization in a number field via {Newton} polygons},
     journal = {Czechoslovak Mathematical Journal},
     pages = {529--543},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2021.0516-19},
     mrnumber = {4263184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0516-19/}
}
TY  - JOUR
AU  - El Fadil, Lhoussain
TI  - Prime ideal factorization in a number field via Newton polygons
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 529
EP  - 543
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0516-19/
DO  - 10.21136/CMJ.2021.0516-19
LA  - en
ID  - 10_21136_CMJ_2021_0516_19
ER  - 
%0 Journal Article
%A El Fadil, Lhoussain
%T Prime ideal factorization in a number field via Newton polygons
%J Czechoslovak Mathematical Journal
%D 2021
%P 529-543
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0516-19/
%R 10.21136/CMJ.2021.0516-19
%G en
%F 10_21136_CMJ_2021_0516_19
El Fadil, Lhoussain. Prime ideal factorization in a number field via Newton polygons. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 529-543. doi: 10.21136/CMJ.2021.0516-19

[1] Bauer, M.: Über die ausserwesentliche Diskriminantenteiler einer Gattung. Math. Ann. 64 (1907), 573-576 German \99999JFM99999 38.0249.02. | DOI | MR

[2] Bauer, M.: Zur allgemeinen Theorie der algebraischen Grösen. J. Reine Angew. Math. 132 (1907), 21-32 German. | DOI | MR

[3] Cohen, S. D., Movahhedi, A., Salinier, A.: Factorization over local fields and the irreducibility of generalized difference polynomials. Mathematika 47 (2000), 173-196. | DOI | MR | JFM

[4] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Math. Klasse Königlichen Gesellsch. Wiss. Göttingen 23 (1878), 3-37 German.

[5] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields. J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. | DOI | MR | JFM

[6] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. | DOI | MR | JFM

[7] Hensel, K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante. J. Reine Angew. Math. 113 (1894), 61-83 German \99999JFM99999 25.0135.03. | DOI | MR

[8] Khanduja, S. K., Kumar, M.: Prolongations of valuations to finite extensions. Manuscr. Math. 131 (2010), 323-334. | DOI | MR | JFM

[9] MacLane, S.: A construction for absolute values in polynomial rings. Trans. Am. Math. Soc. 40 (1936), 363-395 \99999JFM99999 62.1106.02. | DOI | MR

Cité par Sources :