Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1229-1233
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group. We prove that if every self-centralizing subgroup of $G$ is nilpotent or subnormal or a TI-subgroup, then every subgroup of $G$ is nilpotent or subnormal. Moreover, $G$ has either a normal Sylow $p$-subgroup or a normal $p$-complement for each prime divisor $p$ of $|G|$.
DOI :
10.21136/CMJ.2021.0512-20
Classification :
20D10
Keywords: self-centralizing; nilpotent; TI-subgroup; subnormal; $p$-complement
Keywords: self-centralizing; nilpotent; TI-subgroup; subnormal; $p$-complement
@article{10_21136_CMJ_2021_0512_20,
author = {Shi, Jiangtao and Li, Na},
title = {Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a {TI-subgroup}},
journal = {Czechoslovak Mathematical Journal},
pages = {1229--1233},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0512-20},
mrnumber = {4339125},
zbl = {07442488},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/}
}
TY - JOUR AU - Shi, Jiangtao AU - Li, Na TI - Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1229 EP - 1233 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/ DO - 10.21136/CMJ.2021.0512-20 LA - en ID - 10_21136_CMJ_2021_0512_20 ER -
%0 Journal Article %A Shi, Jiangtao %A Li, Na %T Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup %J Czechoslovak Mathematical Journal %D 2021 %P 1229-1233 %V 71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/ %R 10.21136/CMJ.2021.0512-20 %G en %F 10_21136_CMJ_2021_0512_20
Shi, Jiangtao; Li, Na. Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1229-1233. doi: 10.21136/CMJ.2021.0512-20
Cité par Sources :