Keywords: self-centralizing; nilpotent; TI-subgroup; subnormal; $p$-complement
@article{10_21136_CMJ_2021_0512_20,
author = {Shi, Jiangtao and Li, Na},
title = {Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a {TI-subgroup}},
journal = {Czechoslovak Mathematical Journal},
pages = {1229--1233},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0512-20},
mrnumber = {4339125},
zbl = {07442488},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/}
}
TY - JOUR AU - Shi, Jiangtao AU - Li, Na TI - Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1229 EP - 1233 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/ DO - 10.21136/CMJ.2021.0512-20 LA - en ID - 10_21136_CMJ_2021_0512_20 ER -
%0 Journal Article %A Shi, Jiangtao %A Li, Na %T Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup %J Czechoslovak Mathematical Journal %D 2021 %P 1229-1233 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/ %R 10.21136/CMJ.2021.0512-20 %G en %F 10_21136_CMJ_2021_0512_20
Shi, Jiangtao; Li, Na. Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1229-1233. doi: 10.21136/CMJ.2021.0512-20
[1] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). | DOI | MR | JFM
[2] Shi, J.: Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup. J. Algebra Appl. 18 (2019), Article ID 1950159, 4 pages. | DOI | MR | JFM
[3] Shi, J., Zhang, C.: Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup. Arch. Math. 101 (2013), 101-104. | DOI | MR | JFM
[4] Shi, J., Zhang, C.: A note on TI-subgroups of a finite group. Algebra Colloq. 21 (2014), 343-346. | DOI | MR | JFM
[5] Sun, Y., Lu, J., Meng, W.: Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups. J. Algebra Appl. 20 (2021), Article ID 2150040, 5 pages. | DOI | MR | JFM
Cité par Sources :