Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1229-1233.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group. We prove that if every self-centralizing subgroup of $G$ is nilpotent or subnormal or a TI-subgroup, then every subgroup of $G$ is nilpotent or subnormal. Moreover, $G$ has either a normal Sylow $p$-subgroup or a normal $p$-complement for each prime divisor $p$ of $|G|$.
DOI : 10.21136/CMJ.2021.0512-20
Classification : 20D10
Keywords: self-centralizing; nilpotent; TI-subgroup; subnormal; $p$-complement
@article{10_21136_CMJ_2021_0512_20,
     author = {Shi, Jiangtao and Li, Na},
     title = {Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a {TI-subgroup}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1229--1233},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0512-20},
     mrnumber = {4339125},
     zbl = {07442488},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/}
}
TY  - JOUR
AU  - Shi, Jiangtao
AU  - Li, Na
TI  - Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1229
EP  - 1233
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/
DO  - 10.21136/CMJ.2021.0512-20
LA  - en
ID  - 10_21136_CMJ_2021_0512_20
ER  - 
%0 Journal Article
%A Shi, Jiangtao
%A Li, Na
%T Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup
%J Czechoslovak Mathematical Journal
%D 2021
%P 1229-1233
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/
%R 10.21136/CMJ.2021.0512-20
%G en
%F 10_21136_CMJ_2021_0512_20
Shi, Jiangtao; Li, Na. Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1229-1233. doi : 10.21136/CMJ.2021.0512-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0512-20/

Cité par Sources :