On the symmetric algebra of certain first syzygy modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1
DOI :
10.21136/CMJ.2021.0508-20
Classification :
13C15, 13D02
Keywords: symmetric algebra; syzygy; dimension; depth
Keywords: symmetric algebra; syzygy; dimension; depth
@article{10_21136_CMJ_2021_0508_20,
author = {Restuccia, Gaetana and Tang, Zhongming and Utano, Rosanna},
title = {On the symmetric algebra of certain first syzygy modules},
journal = {Czechoslovak Mathematical Journal},
pages = {391--409},
publisher = {mathdoc},
volume = {72},
number = {2},
year = {2022},
doi = {10.21136/CMJ.2021.0508-20},
mrnumber = {4412766},
zbl = {07547211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/}
}
TY - JOUR AU - Restuccia, Gaetana AU - Tang, Zhongming AU - Utano, Rosanna TI - On the symmetric algebra of certain first syzygy modules JO - Czechoslovak Mathematical Journal PY - 2022 SP - 391 EP - 409 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/ DO - 10.21136/CMJ.2021.0508-20 LA - en ID - 10_21136_CMJ_2021_0508_20 ER -
%0 Journal Article %A Restuccia, Gaetana %A Tang, Zhongming %A Utano, Rosanna %T On the symmetric algebra of certain first syzygy modules %J Czechoslovak Mathematical Journal %D 2022 %P 391-409 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/ %R 10.21136/CMJ.2021.0508-20 %G en %F 10_21136_CMJ_2021_0508_20
Restuccia, Gaetana; Tang, Zhongming; Utano, Rosanna. On the symmetric algebra of certain first syzygy modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409. doi: 10.21136/CMJ.2021.0508-20
Cité par Sources :