On the symmetric algebra of certain first syzygy modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1
Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1
DOI : 10.21136/CMJ.2021.0508-20
Classification : 13C15, 13D02
Keywords: symmetric algebra; syzygy; dimension; depth
@article{10_21136_CMJ_2021_0508_20,
     author = {Restuccia, Gaetana and Tang, Zhongming and Utano, Rosanna},
     title = {On the symmetric algebra of certain first syzygy modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {391--409},
     year = {2022},
     volume = {72},
     number = {2},
     doi = {10.21136/CMJ.2021.0508-20},
     mrnumber = {4412766},
     zbl = {07547211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/}
}
TY  - JOUR
AU  - Restuccia, Gaetana
AU  - Tang, Zhongming
AU  - Utano, Rosanna
TI  - On the symmetric algebra of certain first syzygy modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 391
EP  - 409
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/
DO  - 10.21136/CMJ.2021.0508-20
LA  - en
ID  - 10_21136_CMJ_2021_0508_20
ER  - 
%0 Journal Article
%A Restuccia, Gaetana
%A Tang, Zhongming
%A Utano, Rosanna
%T On the symmetric algebra of certain first syzygy modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 391-409
%V 72
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/
%R 10.21136/CMJ.2021.0508-20
%G en
%F 10_21136_CMJ_2021_0508_20
Restuccia, Gaetana; Tang, Zhongming; Utano, Rosanna. On the symmetric algebra of certain first syzygy modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409. doi: 10.21136/CMJ.2021.0508-20

[1] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150. Springer, New York (1995). | DOI | MR | JFM

[2] Eliahou, S., Kervaire, M.: Minimal resolution of some monomial ideals. J. Algebra 129 (1990), 1-25. | DOI | MR | JFM

[3] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). | DOI | MR | JFM

[4] Herzog, J., Restuccia, G., Rinaldo, G.: On the depth and regularity of the symmetric algebra. Beitr. Algebra Geom. 47 (2006), 29-51. | MR | JFM

[5] Herzog, J., Restuccia, G., Tang, Z.: $s$-sequences and symmetric algebras. Manuscr. Math. 104 (2001), 479-501. | DOI | MR | JFM

[6] Herzog, J., Tang, Z., Zarzuela, S.: Symmetric and Rees algebras of Koszul cycles and their Gröbner bases. Manuscr. Math. 112 (2003), 489-509. | DOI | MR | JFM

[7] Restuccia, G., Tang, Z., Utano, R.: On the symmetric algebra of the first syzygy of a graded maximal ideal. Commun. Algebra 44 (2016), 1110-1118. | DOI | MR | JFM

[8] Restuccia, G., Tang, Z., Utano, R.: On invariants of certain symmetric algebras. Ann. Mat. Pura Appl. 197 (2018), 1923-1935. | DOI | MR | JFM

[9] Tang, Z.: On certain monomial sequences. J. Algebra 282 (2004), 831-842. | DOI | MR | JFM

[10] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). | DOI | MR | JFM

Cité par Sources :