On the symmetric algebra of certain first syzygy modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(R,\frak {m})$ be a standard graded $K$-algebra over a field $K$. Then $R$ can be written as $S/I$, where $I\subseteq (x_1,\ldots ,x_n)^2$ is a graded ideal of a polynomial ring $S=K[x_1,\ldots ,x_n]$. Assume that $n\geq 3$ and $I$ is a strongly stable monomial ideal. We study the symmetric algebra ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ of the first syzygy module ${\rm Syz}_1(\frak {m})$ of $\frak {m}$. When the minimal generators of $I$ are all of degree 2, the dimension of ${\rm Sym}_R({\rm Syz}_1(\frak {m}))$ is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.\looseness -1
DOI : 10.21136/CMJ.2021.0508-20
Classification : 13C15, 13D02
Keywords: symmetric algebra; syzygy; dimension; depth
@article{10_21136_CMJ_2021_0508_20,
     author = {Restuccia, Gaetana and Tang, Zhongming and Utano, Rosanna},
     title = {On the symmetric algebra of certain first syzygy modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {391--409},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2022},
     doi = {10.21136/CMJ.2021.0508-20},
     mrnumber = {4412766},
     zbl = {07547211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/}
}
TY  - JOUR
AU  - Restuccia, Gaetana
AU  - Tang, Zhongming
AU  - Utano, Rosanna
TI  - On the symmetric algebra of certain first syzygy modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 391
EP  - 409
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/
DO  - 10.21136/CMJ.2021.0508-20
LA  - en
ID  - 10_21136_CMJ_2021_0508_20
ER  - 
%0 Journal Article
%A Restuccia, Gaetana
%A Tang, Zhongming
%A Utano, Rosanna
%T On the symmetric algebra of certain first syzygy modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 391-409
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/
%R 10.21136/CMJ.2021.0508-20
%G en
%F 10_21136_CMJ_2021_0508_20
Restuccia, Gaetana; Tang, Zhongming; Utano, Rosanna. On the symmetric algebra of certain first syzygy modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 391-409. doi : 10.21136/CMJ.2021.0508-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0508-20/

Cité par Sources :