Keywords: Riesz potential; Trudinger's inequality; Musielak-Orlicz-Morrey space; double phase functional
@article{10_21136_CMJ_2021_0506_19,
author = {Maeda, Fumi-Yuki and Mizuta, Yoshihiro and Ohno, Takao and Shimomura, Tetsu},
title = {Trudinger's inequality for double phase functionals with variable exponents},
journal = {Czechoslovak Mathematical Journal},
pages = {511--528},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2021.0506-19},
mrnumber = {4263183},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0506-19/}
}
TY - JOUR AU - Maeda, Fumi-Yuki AU - Mizuta, Yoshihiro AU - Ohno, Takao AU - Shimomura, Tetsu TI - Trudinger's inequality for double phase functionals with variable exponents JO - Czechoslovak Mathematical Journal PY - 2021 SP - 511 EP - 528 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0506-19/ DO - 10.21136/CMJ.2021.0506-19 LA - en ID - 10_21136_CMJ_2021_0506_19 ER -
%0 Journal Article %A Maeda, Fumi-Yuki %A Mizuta, Yoshihiro %A Ohno, Takao %A Shimomura, Tetsu %T Trudinger's inequality for double phase functionals with variable exponents %J Czechoslovak Mathematical Journal %D 2021 %P 511-528 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0506-19/ %R 10.21136/CMJ.2021.0506-19 %G en %F 10_21136_CMJ_2021_0506_19
Maeda, Fumi-Yuki; Mizuta, Yoshihiro; Ohno, Takao; Shimomura, Tetsu. Trudinger's inequality for double phase functionals with variable exponents. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 511-528. doi: 10.21136/CMJ.2021.0506-19
[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). | DOI | MR | JFM
[2] Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal. 275 (2018), 2538-2571. | DOI | MR | JFM
[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379. | DOI | MR | JFM
[4] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. | DOI | MR | JFM
[5] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. | DOI | MR | JFM
[6] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. | DOI | MR | JFM
[7] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent. Math. Inequal. Appl. 8 (2005), 619-631. | DOI | MR | JFM
[8] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. | MR | JFM
[9] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent. J. Math. Anal. Appl. 366 (2010), 391-417. | DOI | MR | JFM
[10] Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. | DOI | MR | JFM
[11] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. | DOI | MR | JFM
[12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces. Potential Anal. 38 (2013), 515-535. | DOI | MR | JFM
[13] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents. Forum Math. 31 (2019), 517-527. | DOI | MR | JFM
[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Var. Elliptic Equ. 56 (2011), 671-695. | DOI | MR | JFM
[15] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent. Bull. Sci. Math. 134 (2010), 12-36. | DOI | MR | JFM
[16] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis, München 20 (2000), 201-223. | DOI | MR | JFM
[17] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60 (2008), 583-602. | DOI | MR | JFM
[18] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034. Springer, Berlin (1983). | DOI | MR | JFM
[19] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces. Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. | MR | JFM
[20] Ohno, T., Shimomura, T.: Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces. Bull. Sci. Math. 138 (2014), 225-235. | DOI | MR | JFM
Cité par Sources :