Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_CMJ_2021_0491_20, author = {Zhang, Shaoxiang and Chen, Huibin}, title = {New {Einstein} metrics on ${\rm Sp}(n)$ which are non-naturally reductive}, journal = {Czechoslovak Mathematical Journal}, pages = {349--363}, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2022}, doi = {10.21136/CMJ.2021.0491-20}, mrnumber = {4412763}, zbl = {07547208}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0491-20/} }
TY - JOUR AU - Zhang, Shaoxiang AU - Chen, Huibin TI - New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive JO - Czechoslovak Mathematical Journal PY - 2022 SP - 349 EP - 363 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0491-20/ DO - 10.21136/CMJ.2021.0491-20 LA - en ID - 10_21136_CMJ_2021_0491_20 ER -
%0 Journal Article %A Zhang, Shaoxiang %A Chen, Huibin %T New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive %J Czechoslovak Mathematical Journal %D 2022 %P 349-363 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0491-20/ %R 10.21136/CMJ.2021.0491-20 %G en %F 10_21136_CMJ_2021_0491_20
Zhang, Shaoxiang; Chen, Huibin. New Einstein metrics on ${\rm Sp}(n)$ which are non-naturally reductive. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 2, pp. 349-363. doi : 10.21136/CMJ.2021.0491-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0491-20/
Cité par Sources :