Some bounds for the annihilators of local cohomology and Ext modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 265-284
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
DOI : 10.21136/CMJ.2021.0456-20
Classification : 13D07, 13D45
Keywords: local cohomology module; Ext module; annihilator; primary decomposition
@article{10_21136_CMJ_2021_0456_20,
     author = {Fathi, Ali},
     title = {Some bounds for the annihilators of local cohomology and {Ext} modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {265--284},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0456-20},
     mrnumber = {4389119},
     zbl = {07511566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0456-20/}
}
TY  - JOUR
AU  - Fathi, Ali
TI  - Some bounds for the annihilators of local cohomology and Ext modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 265
EP  - 284
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0456-20/
DO  - 10.21136/CMJ.2021.0456-20
LA  - en
ID  - 10_21136_CMJ_2021_0456_20
ER  - 
%0 Journal Article
%A Fathi, Ali
%T Some bounds for the annihilators of local cohomology and Ext modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 265-284
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0456-20/
%R 10.21136/CMJ.2021.0456-20
%G en
%F 10_21136_CMJ_2021_0456_20
Fathi, Ali. Some bounds for the annihilators of local cohomology and Ext modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 265-284. doi: 10.21136/CMJ.2021.0456-20

[1] Atazadeh, A., Sedghi, M., Naghipour, R.: On the annihilators and attached primes of top local cohomology modules. Arch. Math. 102 (2014), 225-236. | DOI | MR | JFM

[2] Atazadeh, A., Sedghi, M., Naghipour, R.: Cohomological dimension filtration and annihilators of top local cohomology modules. Colloq. Math. 139 (2015), 25-35. | DOI | MR | JFM

[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969). | MR | JFM

[4] Bahmanpour, K.: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. | DOI | MR | JFM

[5] Bahmanpour, K., A'zami, J., Ghasemi, G.: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. | DOI | MR | JFM

[6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[7] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[8] Chu, L., Tang, Z., Tang, H.: A note on almost Cohen-Macaulay modules. J. Algebra Appl. 14 (2015), Article ID 1550136, 7 pages. | DOI | MR | JFM

[9] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. | DOI | MR | JFM

[10] Huneke, C.: Lectures on local cohomology. Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. | DOI | MR | JFM

[11] Lynch, L. R.: Annihilators of top local cohomology. Commun. Algebra 40 (2012), 542-551. | DOI | MR | JFM

[12] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). | DOI | MR | JFM

[13] Sharp, R. Y.: Gorenstein modules. Math. Z. 115 (1970), 117-139. | DOI | MR | JFM

[14] Sharp, R. Y.: On Gorenstein modules over a complete Cohen-Macaulay local ring. Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434 \99999DOI99999 10.1093/qmath/22.3.425 . | DOI | MR | JFM

Cité par Sources :