Generalized divisor problem for new forms of higher level
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum $$ \mathcal {S}_k(X): = \sum _{n} \sum _{n=n_1,n_2,\ldots ,n_k} \lambda _f(n_1)\lambda _f(n_2)\ldots \lambda _f(n_k) $$ and show that $\mathcal {S}_k(X) \ll _{f,\epsilon } X^{1-3/(2(k+3))+\epsilon }$ for every $k\geq 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al.\ (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\geq 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.
DOI : 10.21136/CMJ.2021.0451-20
Classification : 11F30, 11N37
Keywords: generalized divisor problem; cusp form of higher level
@article{10_21136_CMJ_2021_0451_20,
     author = {Krishnamoorthy, Krishnarjun},
     title = {Generalized divisor problem for new forms of higher level},
     journal = {Czechoslovak Mathematical Journal},
     pages = {259--263},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.21136/CMJ.2021.0451-20},
     mrnumber = {4389118},
     zbl = {07511565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/}
}
TY  - JOUR
AU  - Krishnamoorthy, Krishnarjun
TI  - Generalized divisor problem for new forms of higher level
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 259
EP  - 263
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/
DO  - 10.21136/CMJ.2021.0451-20
LA  - en
ID  - 10_21136_CMJ_2021_0451_20
ER  - 
%0 Journal Article
%A Krishnamoorthy, Krishnarjun
%T Generalized divisor problem for new forms of higher level
%J Czechoslovak Mathematical Journal
%D 2022
%P 259-263
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/
%R 10.21136/CMJ.2021.0451-20
%G en
%F 10_21136_CMJ_2021_0451_20
Krishnamoorthy, Krishnarjun. Generalized divisor problem for new forms of higher level. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263. doi : 10.21136/CMJ.2021.0451-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/

Cité par Sources :