Generalized divisor problem for new forms of higher level
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum $$ \mathcal {S}_k(X): = \sum _{n} \sum _{n=n_1,n_2,\ldots ,n_k} \lambda _f(n_1)\lambda _f(n_2)\ldots \lambda _f(n_k) $$ and show that $\mathcal {S}_k(X) \ll _{f,\epsilon } X^{1-3/(2(k+3))+\epsilon }$ for every $k\geq 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al.\ (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\geq 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.
DOI :
10.21136/CMJ.2021.0451-20
Classification :
11F30, 11N37
Keywords: generalized divisor problem; cusp form of higher level
Keywords: generalized divisor problem; cusp form of higher level
@article{10_21136_CMJ_2021_0451_20,
author = {Krishnamoorthy, Krishnarjun},
title = {Generalized divisor problem for new forms of higher level},
journal = {Czechoslovak Mathematical Journal},
pages = {259--263},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2022},
doi = {10.21136/CMJ.2021.0451-20},
mrnumber = {4389118},
zbl = {07511565},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/}
}
TY - JOUR AU - Krishnamoorthy, Krishnarjun TI - Generalized divisor problem for new forms of higher level JO - Czechoslovak Mathematical Journal PY - 2022 SP - 259 EP - 263 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/ DO - 10.21136/CMJ.2021.0451-20 LA - en ID - 10_21136_CMJ_2021_0451_20 ER -
%0 Journal Article %A Krishnamoorthy, Krishnarjun %T Generalized divisor problem for new forms of higher level %J Czechoslovak Mathematical Journal %D 2022 %P 259-263 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/ %R 10.21136/CMJ.2021.0451-20 %G en %F 10_21136_CMJ_2021_0451_20
Krishnamoorthy, Krishnarjun. Generalized divisor problem for new forms of higher level. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263. doi: 10.21136/CMJ.2021.0451-20
Cité par Sources :