Generalized divisor problem for new forms of higher level
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum $$ \mathcal {S}_k(X): = \sum _{n0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al.\ (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\geq 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.
Suppose that $f$ is a primitive Hecke eigenform or a Mass cusp form for $\Gamma _0(N)$ with normalized eigenvalues $\lambda _f(n)$ and let $X>1$ be a real number. We consider the sum $$ \mathcal {S}_k(X): = \sum _{n} \sum _{n=n_1,n_2,\ldots ,n_k} \lambda _f(n_1)\lambda _f(n_2)\ldots \lambda _f(n_k) $$ and show that $\mathcal {S}_k(X) \ll _{f,\epsilon } X^{1-3/(2(k+3))+\epsilon }$ for every $k\geq 1$ and $\epsilon >0$. The same problem was considered for the case $N=1$, that is for the full modular group in Lü (2012) and Kanemitsu et al.\ (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for $k\geq 5$. Since the result is valid for arbitrary level, we obtain, as a corollary, estimates on sums of the form $\mathcal {S}_k(X)$, where the sum involves restricted coefficients of some suitable half integral weight modular forms.
DOI : 10.21136/CMJ.2021.0451-20
Classification : 11F30, 11N37
Keywords: generalized divisor problem; cusp form of higher level
@article{10_21136_CMJ_2021_0451_20,
     author = {Krishnamoorthy, Krishnarjun},
     title = {Generalized divisor problem for new forms of higher level},
     journal = {Czechoslovak Mathematical Journal},
     pages = {259--263},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0451-20},
     mrnumber = {4389118},
     zbl = {07511565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/}
}
TY  - JOUR
AU  - Krishnamoorthy, Krishnarjun
TI  - Generalized divisor problem for new forms of higher level
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 259
EP  - 263
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/
DO  - 10.21136/CMJ.2021.0451-20
LA  - en
ID  - 10_21136_CMJ_2021_0451_20
ER  - 
%0 Journal Article
%A Krishnamoorthy, Krishnarjun
%T Generalized divisor problem for new forms of higher level
%J Czechoslovak Mathematical Journal
%D 2022
%P 259-263
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0451-20/
%R 10.21136/CMJ.2021.0451-20
%G en
%F 10_21136_CMJ_2021_0451_20
Krishnamoorthy, Krishnarjun. Generalized divisor problem for new forms of higher level. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 259-263. doi: 10.21136/CMJ.2021.0451-20

[1] Aggarwal, K.: Weyl bound for GL(2) in $t$-aspect via a simple delta method. J. Number Theory 208 (2020), 72-100. | DOI | MR | JFM

[2] Booker, A. R., Milinovich, M. B., Ng, N.: Subconvexity for modular form $L$-functions in the $t$ aspect. Adv. Math. 341 (2019), 299-335. | DOI | MR | JFM

[3] Fomenko, O. M.: On summatory functions for automorphic $L$-functions. J. Math. Sci., New York 184 (2012), 776-785. | DOI | MR | JFM

[4] Good, A.: The square mean of Dirichlet series associated to cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM

[5] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications 53. American Mathematical Society, Providence (2004). | DOI | MR | JFM

[6] Kanemitsu, S., Sankaranarayanan, A., Tanigawa, Y.: A mean value theorem for Dirichlet series and a general divisor problem. Monatsh. Math. 136 (2002), 17-34. | DOI | MR | JFM

[7] Landau, E.: Über die Anzahl der Gitterpunkte in gewissen Bereichen. Gött. Nachr. 1915 (1915), 209-243 German \99999JFM99999 45.0312.02.

[8] Lü, G.: On general divisor problems involving Hecke eigenvalues. Acta. Math. Hung. 135 (2012), 148-159. | DOI | MR | JFM

[9] Munshi, R.: Sub-Weyl bounds for $GL(2)$ $L$-functions. Available at , 30 pages. | arXiv

[10] Shimura, G.: On modular forms of half integral weight. Ann. Math. (2) 97 (1973), 440-481. | DOI | MR | JFM

[11] Zhang, W.: Some results on divisor problems related to cusp forms. Ramanujan J. 53 (2020), 75-83. | DOI | MR | JFM

Cité par Sources :