Keywords: compact operator; integral equation; controlled convergence; Henstock-Kurzweil integral
@article{10_21136_CMJ_2021_0447_20,
author = {Boonpogkrong, Varayu},
title = {Compact operators and integral equations in the $\cal {HK}$ space},
journal = {Czechoslovak Mathematical Journal},
pages = {239--257},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0447-20},
mrnumber = {4389117},
zbl = {07511564},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0447-20/}
}
TY - JOUR
AU - Boonpogkrong, Varayu
TI - Compact operators and integral equations in the $\cal {HK}$ space
JO - Czechoslovak Mathematical Journal
PY - 2022
SP - 239
EP - 257
VL - 72
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0447-20/
DO - 10.21136/CMJ.2021.0447-20
LA - en
ID - 10_21136_CMJ_2021_0447_20
ER -
%0 Journal Article
%A Boonpogkrong, Varayu
%T Compact operators and integral equations in the $\cal {HK}$ space
%J Czechoslovak Mathematical Journal
%D 2022
%P 239-257
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0447-20/
%R 10.21136/CMJ.2021.0447-20
%G en
%F 10_21136_CMJ_2021_0447_20
Boonpogkrong, Varayu. Compact operators and integral equations in the $\cal {HK}$ space. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 239-257. doi: 10.21136/CMJ.2021.0447-20
[1] Alewine, J. A., Schechter, E.: Topologizing the Denjoy space by measuring equiintegrability. Real Anal. Exch. 31 (2005/06), 23-44. | DOI | MR | JFM
[2] Apostol, T. M.: Mathematical Analysis: A Modern Approach to Advanced Calculus. Addison-Wesley Mathematics Series. Addison Wesley, Reading (1957). | MR | JFM
[3] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space. Real Anal. Exch. 21 (1995/96), 604-614. | DOI | MR | JFM
[4] Chew, T. S.: The superposition operators in the space of Henstock-Kurzweil integrable functions. New Integrals Lecture Notes in Mathematics 1419. Springer, Berlin (1990), 19-24. | DOI | MR | JFM
[5] Chew, T. S., Lee, P. Y.: The topology of the space of Denjoy integrable functions. Bull. Aust. Math. Soc. 42 (1990), 517-524. | DOI | MR | JFM
[6] Federson, M., Bianconi, R.: Linear Fredholm integral equations and the integral of Kurzweil. J. Appl. Anal. 8 (2002), 83-110. | DOI | MR | JFM
[7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). | DOI | MR | JFM
[8] Hönig, C. S.: There is no natural Banach space norm on the space of Kurzweil-Henstock- Denjoy-Perron integrable functions. Seminário Brasileiro de Análise 30 (1989), 387-397. | MR
[9] Köthe, G.: Topological Vector Spaces I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). | DOI | MR | JFM
[10] Krasnosel'skii, M. A., Zabreiko, P. P., Pustyl'nik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions. Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). | MR | JFM
[11] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces. Series in Real Analysis 7. World Scientific, Singapore (2000). | DOI | MR | JFM
[12] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). | DOI | MR | JFM
[13] Lee, P. Y.: Topology of the Denjoy space. Southeast Asian Bull. Math. 38 (2014), 655-659. | MR | JFM
[14] Méndez, L. Á. G., Reyna, J. A. E., Cárdenas, M. G. R., García, J. F. E.: The closed graph theorem and the space of Henstock-Kurzweil integrable functions with the Alexiewicz norm. Abstr. Appl. Anal. 2013 (2013), Article ID 476287, 4 pages. | DOI | MR | JFM
[15] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). | DOI | MR | JFM
[16] Morris, S. A., Noussair, E. S.: The Schauder-Tychonoff fixed point theorem and applications. Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. | MR | JFM
[17] Paúl, P. J.: The space of Denjoy-Dunford integrable functions is ultrabornological. Bull. Belg. Math. Soc. - Simon Stevin 8 (2001), 75-82. | DOI | MR | JFM
[18] Royden, H. L.: Real Analysis. Macmillan, New York (1989). | MR | JFM
[19] Sari, D. K., Lee, P. Y., Zhao, D.: A new topology on the space of primitives of Henstock-Kurzweil integrable functions. Southeast Asian Bull. Math. 42 (2018), 719-728. | MR | JFM
[20] Schaefer, H. H.: Topological Vector Space. Graduate Texts in Mathematics 3. Springer, New York (1971). | DOI | MR | JFM
[21] Schwabik, Š.: On an integral operator in the space of functions with bounded variation. Čas. Pěst. Mat. 97 (1972), 297-330. | DOI | MR | JFM
[22] Thomson, B. S.: The space of Denjoy-Perron integrable functions. Real Anal. Exch. 25 (1999/2000), 711-726. | DOI | MR | JFM
[23] Tvrdý, M.: Linear integral equations in the space of regulated functions. Math. Bohem. 123 (1998), 177-212. | DOI | MR | JFM
Cité par Sources :