The strong persistence property and symbolic strong persistence property
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
DOI : 10.21136/CMJ.2021.0407-20
Classification : 05C25, 05E40, 13A30, 13B25, 13C13, 13P25
Keywords: strong persistence property; associated prime; cover ideal; symbolic strong persistence property
@article{10_21136_CMJ_2021_0407_20,
     author = {Nasernejad, Mehrdad and Khashyarmanesh, Kazem and Roberts, Leslie G. and Toledo, Jonathan},
     title = {The strong persistence property and symbolic strong persistence property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {209--237},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0407-20},
     mrnumber = {4389116},
     zbl = {07511563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/}
}
TY  - JOUR
AU  - Nasernejad, Mehrdad
AU  - Khashyarmanesh, Kazem
AU  - Roberts, Leslie G.
AU  - Toledo, Jonathan
TI  - The strong persistence property and symbolic strong persistence property
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 209
EP  - 237
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/
DO  - 10.21136/CMJ.2021.0407-20
LA  - en
ID  - 10_21136_CMJ_2021_0407_20
ER  - 
%0 Journal Article
%A Nasernejad, Mehrdad
%A Khashyarmanesh, Kazem
%A Roberts, Leslie G.
%A Toledo, Jonathan
%T The strong persistence property and symbolic strong persistence property
%J Czechoslovak Mathematical Journal
%D 2022
%P 209-237
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/
%R 10.21136/CMJ.2021.0407-20
%G en
%F 10_21136_CMJ_2021_0407_20
Nasernejad, Mehrdad; Khashyarmanesh, Kazem; Roberts, Leslie G.; Toledo, Jonathan. The strong persistence property and symbolic strong persistence property. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237. doi: 10.21136/CMJ.2021.0407-20

[1] Brodmann, M.: Asymptotic stability of $Ass(M/I^{n}M)$. Proc. Am. Math. Soc. 74 (1979), 16-18. | DOI | MR | JFM

[2] Cooper, S. M., Embree, R. J. D., Hà, H. T., Hoefel, A. H.: Symbolic powers of monomial ideals. Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 39-55. | DOI | MR | JFM

[3] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals. J. Algebra 331 (2011), 224-242. | DOI | MR | JFM

[4] Gitler, I., Reyes, E., Villarreal, R. H.: Blowup algebras of ideals of vertex covers of bipartite graphs. Algebraic Structures and Their Representations Contemporary Mathematics 376. American Mathematical Society, Providence (2005), 273-279. | DOI | MR | JFM

[5] Grayson, D. R., Stillman, M. E., Eisenbund, D.: Macaulay2: A software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

[6] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). | DOI | MR | JFM

[7] Herzog, J., Qureshi, A. A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219 (2015), 530-542. | DOI | MR | JFM

[8] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals. Arch. Math. 94 (2010), 327-337. | DOI | MR | JFM

[9] Kaiser, T., Stehlík, M., Škrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Comb. Theory, Ser. A 123 (2014), 239-251. | DOI | MR | JFM

[10] Khashyarmanesh, K., Nasernejad, M.: On the stable set of associated prime ideals of monomial ideals and square-free monomial ideals. Commun. Algebra 42 (2014), 3753-3759. | DOI | MR | JFM

[11] Khashyarmanesh, K., Nasernejad, M.: Some results on the associated primes of monomial ideals. Southeast Asian Bull. Math. 39 (2015), 439-451. | MR

[12] Martínez-Bernal, J., Morey, S., Villarreal, R. H.: Associated primes of powers of edge ideals. Collect. Math. 63 (2012), 361-374. | DOI | MR | JFM

[13] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). | DOI | MR | JFM

[14] Mohammadi, F., Kiani, D.: Sequentially Cohen-Macaulay graphs of form $\theta_{n_1, \ldots, n_k}$. Bull. Iran. Math. Soc. 36 (2010), 109-118. | MR | JFM

[15] Nasernejad, M.: Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications. J. Algebra Relat. Top. 2 (2014), 15-25. | JFM

[16] Nasernejad, M.: Persistence property for some classes of monomial ideals of a polynomial ring. J. Algebra Appl. 16 (2017), Article ID 1750105, 17 pages. | DOI | MR | JFM

[17] Nasernejad, M., Khashyarmanesh, K.: On the Alexander dual of the path ideals of rooted and unrooted trees. Commun. Algebra 45 (2017), 1853-1864. | DOI | MR | JFM

[18] Nasernejad, M., Khashyarmanesh, K., Al-Ayyoub, I.: Associated primes of powers of cover ideals under graph operations. Commun. Algebra 47 (2019), 1985-1996. | DOI | MR | JFM

[19] Rajaee, S., Nasernejad, M., Al-Ayyoub, I.: Superficial ideals for monomial ideals. J. Algebra Appl. 17 (2018), Article ID 1850102, 28 pages. | DOI | MR | JFM

[20] L. J. Ratliff, Jr.: On prime divisors of $I^n$, $n$ large. Mich. Math. J. 23 (1976), 337-352. | DOI | MR | JFM

[21] Reyes, E., Toledo, J.: On the strong persistence property for monomial ideals. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 293-305. | MR | JFM

[22] Villarreal, R. H.: Monomial Algebras. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). | DOI | MR | JFM

Cité par Sources :