The strong persistence property and symbolic strong persistence property
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
DOI :
10.21136/CMJ.2021.0407-20
Classification :
05C25, 05E40, 13A30, 13B25, 13C13, 13P25
Keywords: strong persistence property; associated prime; cover ideal; symbolic strong persistence property
Keywords: strong persistence property; associated prime; cover ideal; symbolic strong persistence property
@article{10_21136_CMJ_2021_0407_20,
author = {Nasernejad, Mehrdad and Khashyarmanesh, Kazem and Roberts, Leslie G. and Toledo, Jonathan},
title = {The strong persistence property and symbolic strong persistence property},
journal = {Czechoslovak Mathematical Journal},
pages = {209--237},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2022},
doi = {10.21136/CMJ.2021.0407-20},
mrnumber = {4389116},
zbl = {07511563},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/}
}
TY - JOUR AU - Nasernejad, Mehrdad AU - Khashyarmanesh, Kazem AU - Roberts, Leslie G. AU - Toledo, Jonathan TI - The strong persistence property and symbolic strong persistence property JO - Czechoslovak Mathematical Journal PY - 2022 SP - 209 EP - 237 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/ DO - 10.21136/CMJ.2021.0407-20 LA - en ID - 10_21136_CMJ_2021_0407_20 ER -
%0 Journal Article %A Nasernejad, Mehrdad %A Khashyarmanesh, Kazem %A Roberts, Leslie G. %A Toledo, Jonathan %T The strong persistence property and symbolic strong persistence property %J Czechoslovak Mathematical Journal %D 2022 %P 209-237 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/ %R 10.21136/CMJ.2021.0407-20 %G en %F 10_21136_CMJ_2021_0407_20
Nasernejad, Mehrdad; Khashyarmanesh, Kazem; Roberts, Leslie G.; Toledo, Jonathan. The strong persistence property and symbolic strong persistence property. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237. doi: 10.21136/CMJ.2021.0407-20
Cité par Sources :