The strong persistence property and symbolic strong persistence property
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
DOI : 10.21136/CMJ.2021.0407-20
Classification : 05C25, 05E40, 13A30, 13B25, 13C13, 13P25
Keywords: strong persistence property; associated prime; cover ideal; symbolic strong persistence property
@article{10_21136_CMJ_2021_0407_20,
     author = {Nasernejad, Mehrdad and Khashyarmanesh, Kazem and Roberts, Leslie G. and Toledo, Jonathan},
     title = {The strong persistence property and symbolic strong persistence property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {209--237},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.21136/CMJ.2021.0407-20},
     mrnumber = {4389116},
     zbl = {07511563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/}
}
TY  - JOUR
AU  - Nasernejad, Mehrdad
AU  - Khashyarmanesh, Kazem
AU  - Roberts, Leslie G.
AU  - Toledo, Jonathan
TI  - The strong persistence property and symbolic strong persistence property
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 209
EP  - 237
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/
DO  - 10.21136/CMJ.2021.0407-20
LA  - en
ID  - 10_21136_CMJ_2021_0407_20
ER  - 
%0 Journal Article
%A Nasernejad, Mehrdad
%A Khashyarmanesh, Kazem
%A Roberts, Leslie G.
%A Toledo, Jonathan
%T The strong persistence property and symbolic strong persistence property
%J Czechoslovak Mathematical Journal
%D 2022
%P 209-237
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/
%R 10.21136/CMJ.2021.0407-20
%G en
%F 10_21136_CMJ_2021_0407_20
Nasernejad, Mehrdad; Khashyarmanesh, Kazem; Roberts, Leslie G.; Toledo, Jonathan. The strong persistence property and symbolic strong persistence property. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 209-237. doi : 10.21136/CMJ.2021.0407-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0407-20/

Cité par Sources :