On the conjugate type vector and the structure of a normal subgroup
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 201-207
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$.
Let $N$ be a normal subgroup of a group $G$. The structure of $N$ is given when the $G$-conjugacy class sizes of $N$ is a set of a special kind. In fact, we give the structure of a normal subgroup $N$ under the assumption that the set of $G$-conjugacy class sizes of $N$ is $(p_{1n_1}^{a_{1n_1}},\cdots , p_{1 1}^{a_{11}}, 1) \times \cdots \times (p_{rn_r}^{a_{rn_r}},\cdots , p_{r1}^{a_{r1}}, 1)$, where $r>1$, $n_i>1$ and $p_{ij}$ are distinct primes for $i\in \{1, 2, \cdots , r\}$, $j\in \{1, 2, \cdots , n_i\}$.
DOI : 10.21136/CMJ.2021.0395-20
Classification : 20D60, 20E45
Keywords: index; conjugacy class size; Baer group
@article{10_21136_CMJ_2021_0395_20,
     author = {Chen, Ruifang and Guo, Lujun},
     title = {On the conjugate type vector and the structure of a normal subgroup},
     journal = {Czechoslovak Mathematical Journal},
     pages = {201--207},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0395-20},
     mrnumber = {4389115},
     zbl = {07511562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0395-20/}
}
TY  - JOUR
AU  - Chen, Ruifang
AU  - Guo, Lujun
TI  - On the conjugate type vector and the structure of a normal subgroup
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 201
EP  - 207
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0395-20/
DO  - 10.21136/CMJ.2021.0395-20
LA  - en
ID  - 10_21136_CMJ_2021_0395_20
ER  - 
%0 Journal Article
%A Chen, Ruifang
%A Guo, Lujun
%T On the conjugate type vector and the structure of a normal subgroup
%J Czechoslovak Mathematical Journal
%D 2022
%P 201-207
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0395-20/
%R 10.21136/CMJ.2021.0395-20
%G en
%F 10_21136_CMJ_2021_0395_20
Chen, Ruifang; Guo, Lujun. On the conjugate type vector and the structure of a normal subgroup. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 201-207. doi: 10.21136/CMJ.2021.0395-20

[1] Akhlaghi, Z., Beltrán, A., Felipe, M. J., Khatami, M.: Normal subgroups and $p$-regular $G$-class sizes. J. Algebra 336 (2011), 236-241. | DOI | MR | JFM

[2] Baer, R.: Group elements of prime power index. Trans. Am. Math. Soc. 75 (1953), 20-47. | DOI | MR | JFM

[3] Beltrán, A., Felipe, M. J.: Finite groups with a disconnected $p$-regular conjugacy class graph. Commun. Algebra 32 (2004), 3503-3516. | DOI | MR | JFM

[4] Bertram, E. A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22 (1990), 569-575. | DOI | MR | JFM

[5] Camina, A. R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. Lond. Math. Soc., II. Ser. 5 (1972), 127-132. | DOI | MR | JFM

[6] Camina, A. R.: Finite groups of conjugate rank 2. Nagoya Math. J. 53 (1974), 47-57. | DOI | MR | JFM

[7] Camina, A. R., Camina, R. D.: Implications of conjugacy class size. J. Group Theory 1 (1998), 257-269. | DOI | MR | JFM

[8] Camina, A. R., Camina, R. D.: Recognizing direct products from their conjugate type vectors. J. Algebra 234 (2000), 604-608. | DOI | MR | JFM

[9] Itô, N.: On finite groups with given conjugate types. I. Nagoya Math. J. 6 (1953), 17-28. | DOI | MR | JFM

[10] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction. Universitext. Springer, New York (2004). | DOI | MR | JFM

[11] Zhao, X., Guo, X.: On the normal subgroup with exactly two $G$-conjugacy class sizes. Chin. Ann. Math., Ser. B 30 (2009), 427-432. | DOI | MR | JFM

Cité par Sources :