On the minimaxness and coatomicness of local cohomology modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
DOI : 10.21136/CMJ.2021.0383-20
Classification : 13C05, 13D45, 13E05
Keywords: local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
@article{10_21136_CMJ_2021_0383_20,
     author = {Hatamkhani, Marzieh and Roshan-Shekalgourabi, Hajar},
     title = {On the minimaxness and coatomicness of local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {177--190},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0383-20},
     mrnumber = {4389113},
     zbl = {07511560},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/}
}
TY  - JOUR
AU  - Hatamkhani, Marzieh
AU  - Roshan-Shekalgourabi, Hajar
TI  - On the minimaxness and coatomicness of local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 177
EP  - 190
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/
DO  - 10.21136/CMJ.2021.0383-20
LA  - en
ID  - 10_21136_CMJ_2021_0383_20
ER  - 
%0 Journal Article
%A Hatamkhani, Marzieh
%A Roshan-Shekalgourabi, Hajar
%T On the minimaxness and coatomicness of local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 177-190
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/
%R 10.21136/CMJ.2021.0383-20
%G en
%F 10_21136_CMJ_2021_0383_20
Hatamkhani, Marzieh; Roshan-Shekalgourabi, Hajar. On the minimaxness and coatomicness of local cohomology modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190. doi: 10.21136/CMJ.2021.0383-20

[1] Abbasi, A., Roshan-Shekalgourabi, H., Hassanzadeh-Lelekaami, D.: Artinianness of local cohomology modules. Honam Math. J. 38 (2016), 295-304. | DOI | MR | JFM

[2] Aghapournahr, M., Melkersson, L.: Finiteness properties of minimax and coatomic local cohomology modules. Arch. Math. 94 (2010), 519-528. | DOI | MR | JFM

[3] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules. Proc. Am. Math. Soc. 136 (2008), 2359-2363. | DOI | MR | JFM

[4] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules. Proc. Am. Math. Soc. 128 (2000), 2851-2853. | DOI | MR | JFM

[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction With Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[6] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[7] Dibaei, M. T., Yassemi, S.: Cohomological dimension of complexes. Commun. Algebra 32 (2004), 4375-4386. | DOI | MR | JFM

[8] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. | DOI | MR | JFM

[9] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | JFM

[10] Huneke, C.: Problems on local cohomology. Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics. Jones and Bartlett, Boston (1992), 93-108. | MR | JFM

[11] Lorestani, K. B., Sahandi, P., Yassemi, S.: Artinian local cohomology modules. Can. Math. Bull. 50 (2007), 598-602. | DOI | MR | JFM

[12] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). | DOI | MR | JFM

[13] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | JFM

[14] Nam, T. T.: Minimax modules, local homology and local cohomology. Int. J. Math. 26 (2015), Article ID 1550102, 16 pages. | DOI | MR | JFM

[15] Nam, T. T., Nguyen, M. T.: On coatomic modules and local cohomology modules with respect to a pair of ideals. J. Korean Math. Soc. 54 (2017), 1829-1839. | DOI | MR | JFM

[16] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals. Commun. Algebra 41 (2013), 627-637. | DOI | MR | JFM

[17] Rezaei, S.: Minimaxness and finiteness properties of local homology and local cohomology modules. Indian J. Pure Appl. Math. 49 (2018), 383-396. | DOI | MR

[18] Rudlof, P.: On the structure of couniform and complemented modules. J. Pure Appl. Algebra 74 (1991), 281-305. | DOI | MR | JFM

[19] Rudlof, P.: On minimax and related modules. Can. J. Math. 44 (1992), 154-166. | DOI | MR | JFM

[20] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. | DOI | MR | JFM

[21] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories. Proc. Am. Math. Soc. 140 (2012), 2293-2305. | DOI | MR | JFM

[22] Zöschinger, H.: Koatomare Moduln. Math. Z. 170 (1980), 221-232 German. | DOI | MR | JFM

[23] Zöschinger, H.: Minimax-Moduln. J. Algebra 102 (1986), 1-32 German. | DOI | MR | JFM

[24] Zöschinger, H.: Über die Maximalbedingung für radikalvolle Untermoduln. Hokkaido Math. J. 17 (1988), 101-116 German. | DOI | MR | JFM

Cité par Sources :