On the minimaxness and coatomicness of local cohomology modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
DOI : 10.21136/CMJ.2021.0383-20
Classification : 13C05, 13D45, 13E05
Keywords: local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
@article{10_21136_CMJ_2021_0383_20,
     author = {Hatamkhani, Marzieh and Roshan-Shekalgourabi, Hajar},
     title = {On the minimaxness and coatomicness of local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.21136/CMJ.2021.0383-20},
     mrnumber = {4389113},
     zbl = {07511560},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/}
}
TY  - JOUR
AU  - Hatamkhani, Marzieh
AU  - Roshan-Shekalgourabi, Hajar
TI  - On the minimaxness and coatomicness of local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 177
EP  - 190
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/
DO  - 10.21136/CMJ.2021.0383-20
LA  - en
ID  - 10_21136_CMJ_2021_0383_20
ER  - 
%0 Journal Article
%A Hatamkhani, Marzieh
%A Roshan-Shekalgourabi, Hajar
%T On the minimaxness and coatomicness of local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 177-190
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/
%R 10.21136/CMJ.2021.0383-20
%G en
%F 10_21136_CMJ_2021_0383_20
Hatamkhani, Marzieh; Roshan-Shekalgourabi, Hajar. On the minimaxness and coatomicness of local cohomology modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190. doi : 10.21136/CMJ.2021.0383-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/

Cité par Sources :