On the minimaxness and coatomicness of local cohomology modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
Let $R$ be a commutative Noetherian ring, $I$ an ideal of $R$ and $M$ an $R$-module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and $\mathcal {C}$-minimaxness of local cohomology modules. We show that if $M$ is a minimax $R$-module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if $n$ is a nonnegative integer such that $(H^i_I(M))_{\frak m}$ is a minimax $R_{\frak m}$-module for all $\frak m \in {\rm Max} (R)$ and for all $i n$, then the set ${\rm Ass}_R(H^n_I(M))$ is finite. Also, if $H^i_I(M)$ is minimax for all $i \geq n \geq 1$, then $H^i_I(M)$ is Artinian for $i \geq n$. It is shown that if $M$ is a $\mathcal {C}$-minimax module over a local ring such that $H^i_I(M)$ are $\mathcal {C}$-minimax modules for all $i n$ (or $i\geq n$), where $n\geq 1$, then they must be minimax. Consequently, a vanishing theorem is proved for local cohomology modules.
DOI :
10.21136/CMJ.2021.0383-20
Classification :
13C05, 13D45, 13E05
Keywords: local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
Keywords: local cohomology module; minimax module; coatomic module; Artinian module; local-global principle
@article{10_21136_CMJ_2021_0383_20,
author = {Hatamkhani, Marzieh and Roshan-Shekalgourabi, Hajar},
title = {On the minimaxness and coatomicness of local cohomology modules},
journal = {Czechoslovak Mathematical Journal},
pages = {177--190},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0383-20},
mrnumber = {4389113},
zbl = {07511560},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/}
}
TY - JOUR AU - Hatamkhani, Marzieh AU - Roshan-Shekalgourabi, Hajar TI - On the minimaxness and coatomicness of local cohomology modules JO - Czechoslovak Mathematical Journal PY - 2022 SP - 177 EP - 190 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/ DO - 10.21136/CMJ.2021.0383-20 LA - en ID - 10_21136_CMJ_2021_0383_20 ER -
%0 Journal Article %A Hatamkhani, Marzieh %A Roshan-Shekalgourabi, Hajar %T On the minimaxness and coatomicness of local cohomology modules %J Czechoslovak Mathematical Journal %D 2022 %P 177-190 %V 72 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0383-20/ %R 10.21136/CMJ.2021.0383-20 %G en %F 10_21136_CMJ_2021_0383_20
Hatamkhani, Marzieh; Roshan-Shekalgourabi, Hajar. On the minimaxness and coatomicness of local cohomology modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 177-190. doi: 10.21136/CMJ.2021.0383-20
Cité par Sources :