A Menon-type identity using Klee's function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 165-176
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Menon's identity is a classical identity involving gcd sums and the Euler totient function $\phi $. A natural generalization of $\phi $ is the Klee's function $\Phi _s$. We derive a Menon-type identity using Klee's function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
Menon's identity is a classical identity involving gcd sums and the Euler totient function $\phi $. A natural generalization of $\phi $ is the Klee's function $\Phi _s$. We derive a Menon-type identity using Klee's function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
DOI : 10.21136/CMJ.2021.0370-20
Classification : 11A07, 11A25, 20D60, 20D99
Keywords: Euler totient function; generalized gcd; Jordan totient function; Klee's function
@article{10_21136_CMJ_2021_0370_20,
     author = {Chandran, Arya and Thomas, Neha Elizabeth and Namboothiri, K. Vishnu},
     title = {A {Menon-type} identity using {Klee's} function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {165--176},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0370-20},
     mrnumber = {4389112},
     zbl = {07511559},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0370-20/}
}
TY  - JOUR
AU  - Chandran, Arya
AU  - Thomas, Neha Elizabeth
AU  - Namboothiri, K. Vishnu
TI  - A Menon-type identity using Klee's function
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 165
EP  - 176
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0370-20/
DO  - 10.21136/CMJ.2021.0370-20
LA  - en
ID  - 10_21136_CMJ_2021_0370_20
ER  - 
%0 Journal Article
%A Chandran, Arya
%A Thomas, Neha Elizabeth
%A Namboothiri, K. Vishnu
%T A Menon-type identity using Klee's function
%J Czechoslovak Mathematical Journal
%D 2022
%P 165-176
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0370-20/
%R 10.21136/CMJ.2021.0370-20
%G en
%F 10_21136_CMJ_2021_0370_20
Chandran, Arya; Thomas, Neha Elizabeth; Namboothiri, K. Vishnu. A Menon-type identity using Klee's function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 165-176. doi: 10.21136/CMJ.2021.0370-20

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM

[2] Cohen, E.: Some totient functions. Duke Math. J. 23 (1956), 515-522. | DOI | MR | JFM

[3] Haukkanen, P.: Menon's identity with respect to a generalized divisibility relation. Aequationes Math. 70 (2005), 240-246. | DOI | MR | JFM

[4] Haukkanen, P., Tóth, L.: Menon-type identities again: A note on a paper by Li, Kim and Qiao. Publ. Math. 96 (2020), 487-502. | DOI | MR | JFM

[5] Haukkanen, P., Wang, J.: A generalization of Menon's identity with respect to a set of polynomials. Port. Math. 53 (1996), 331-337. | MR | JFM

[6] Jordan, C.: Traité des substitutions et des équations algébriques. Gauthier-Villars, Paris (1870), French \99999JFM99999 03.0042.02. | MR

[7] Menon, P. Kesava: On the sum $\sum (a-1,n),[(a,n)=1]$. J. Indian Math. Soc., New Ser. 29 (1965), 155-163. | MR | JFM

[8] Klee, V. L.: A generalization of Euler's $\varphi$-function. Am. Math. Mon. 55 (1948), 358-359. | DOI | MR | JFM

[9] Li, Y., Kim, D.: A Menon-type identity with many tuples of group of units in residually finite Dedekind domains. J. Number Theory 175 (2017), 42-50. | DOI | MR | JFM

[10] Miguel, C.: A Menon-type identity in residually finite Dedekind domains. J. Number Theory 164 (2016), 43-51. | DOI | MR | JFM

[11] Rao, K. Nageswara: On certain arithmetical sums. Theory of Arithmetic Functions Lecture Notes in Mathematics 251. Springer, Berlin (1972), 181-192. | DOI | MR | JFM

[12] Ramaiah, V. Sita: Arithmetical sums in regular convolutions. J. Reine Angew. Math. 303/304 (1978), 265-283. | DOI | MR | JFM

[13] Sivaramakrishnan, R.: Classical Theory of Arithmetic Functions. Pure and Applied Mathematics 126. Marcel Dekker, New York (1989). | MR | JFM

[14] Sury, B.: Some number-theoretic identities from group actions. Rend. Circ. Mat. Palermo (2) 58 (2009), 99-108. | DOI | MR | JFM

[15] Tărnăuceanu, M.: A generalization of the Euler's totient function. Asian-Eur. J. Math. 8 (2015), Artile ID 1550087, 13 pages. | DOI | MR | JFM

[16] Tóth, L.: Menon's identity and arithmetical sums representing functions of several variables. Rend. Semin. Mat., Univ. Politec. Torino 69 (2011), 97-110. | MR | JFM

[17] Tóth, L.: Menon-type identities concerning Dirichlet characters. Int. J. Number Theory 14 (2018), 1047-1054. | DOI | MR | JFM

[18] Tóth, L.: Short proof and generalization of a Menon-type identity by Li, Hu and Kim. Taiwanese J. Math. 23 (2019), 557-561. | DOI | MR | JFM

[19] Zhao, X.-P., Cao, Z.-F.: Another generalization of Menon's identity. Int. J. Number Theory 13 (2017), 2373-2379. | DOI | MR | JFM

Cité par Sources :