Radial Minkowski additive operators
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 641-654 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism.
We give some characterizations for radial Minkowski additive operators and prove a new characterization of balls. Finally, we show the property of radial Minkowski homomorphism.
DOI : 10.21136/CMJ.2021.0366-19
Classification : 52A20, 52A40
Keywords: characterization; radial Minkowski additive operator; radial Minkowski homomorphism
@article{10_21136_CMJ_2021_0366_19,
     author = {Ji, Lewen},
     title = {Radial {Minkowski} additive operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {641--654},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2021.0366-19},
     mrnumber = {4295236},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0366-19/}
}
TY  - JOUR
AU  - Ji, Lewen
TI  - Radial Minkowski additive operators
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 641
EP  - 654
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0366-19/
DO  - 10.21136/CMJ.2021.0366-19
LA  - en
ID  - 10_21136_CMJ_2021_0366_19
ER  - 
%0 Journal Article
%A Ji, Lewen
%T Radial Minkowski additive operators
%J Czechoslovak Mathematical Journal
%D 2021
%P 641-654
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0366-19/
%R 10.21136/CMJ.2021.0366-19
%G en
%F 10_21136_CMJ_2021_0366_19
Ji, Lewen. Radial Minkowski additive operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 641-654. doi: 10.21136/CMJ.2021.0366-19

[1] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski additive operators under volume constraints. J. Geom. Anal. 28 (2018), 2422-2455. | DOI | MR | JFM

[2] Abardia-Evéquoz, J., Colesanti, A., Gómez, E. Saorín: Minkowski valuations under volume constraints. Adv. Math. 333 (2018), 118-158. | DOI | MR | JFM

[3] Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. (2) 149 (1999), 977-1005. | DOI | MR | JFM

[4] Chen, B., Rota, G.-C.: Totally invariant set functions of polynomial type. Commun. Pure Appl. Math. 47 (1994), 187-197. | DOI | MR | JFM

[5] Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 162, 29 pages. | DOI | MR | JFM

[6] Dorrek, F.: Minkowski endomorphisms. Geom. Funct. Anal. 27 (2017), 466-488. | DOI | MR | JFM

[7] Dulio, P., Gardner, R. J., Peri, C.: Characterizing the dual mixed volume via additive functionals. Indiana Univ. Math. J. 65 (2016), 69-91. | DOI | MR | JFM

[8] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. (2) 140 (1994), 435-447. | DOI | MR | JFM

[9] Gardner, R. J.: Intersection bodies and the Busemann-Petty problem. Trans. Am. Math. Soc. 342 (1994), 435-445. | DOI | MR | JFM

[10] Gardner, R. J., Koldobski, A., Schlumprecht, T.: An analytical solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. (2) 149 (1999), 691-703. | DOI | MR | JFM

[11] Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. Lond. Math. Soc., III. Ser. 78 (1999), 77-115. | DOI | MR | JFM

[12] Guo, L., Jia, H.: The dual Blaschke addition. J. Geom. Anal. 30 (2020), 3026-3034. | DOI | MR | JFM

[13] Ji, L., Zeng, Z.: Some inequalities for radial Blaschke-Minkowski homomorphisms. Czech. Math. J. 67 (2017), 779-793. | DOI | MR | JFM

[14] Kiderlen, M.: Blaschke- and Minkowski-endomorphisms of convex bodies. Trans. Am. Math. Soc. 358 (2006), 5539-5564. | DOI | MR | JFM

[15] Klain, D. A.: Star valuations and dual mixed volumes. Adv. Math. 121 (1996), 80-101. | DOI | MR | JFM

[16] Klain, D. A.: Invariant valuations on star-shaped sets. Adv. Math. 125 (1997), 95-113. | DOI | MR | JFM

[17] Ludwig, M.: Intersection bodies and valuations. Am. J. Math. 128 (2006), 1409-1428. | DOI | MR | JFM

[18] Lutwak, E.: Dual mixed volumes. Pac. J. Math. 58 (1975), 531-538. | DOI | MR | JFM

[19] Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71 (1988), 232-261. | DOI | MR | JFM

[20] Schneider, R.: On Steiner point of convex bodies. Isr. J. Math. 9 (1971), 241-249. | DOI | MR | JFM

[21] Schneider, R.: Equivariant endomorphisms of the space of convex bodies. Trans. Am. Math. Soc. 194 (1974), 53-78. | DOI | MR | JFM

[22] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications 151. Cambridge University Press, Cambridge (2014). | DOI | MR | JFM

[23] Schuster, F. E.: Volume inequalities and additive maps of convex bodies. Mathematika 53 (2006), 211-234. | DOI | MR | JFM

[24] Schuster, F. E.: Convolutions and multiplier transformations of convex bodies. Trans. Am. Math. Soc. 359 (2007), 5567-5591. | DOI | MR | JFM

[25] Schuster, F. E.: Valuations and Busemann-Petty type problems. Adv. Math. 219 (2008), 344-368. | DOI | MR | JFM

[26] Tradacete, P., Villanueva, I.: Radial continuous valuations on star bodies. J. Math. Anal. Appl. 454 (2017), 995-1018. | DOI | MR | JFM

[27] Tradacete, P., Villanueva, I.: Continuity and representation of valuations on star bodies. Adv. Math. 329 (2018), 361-391. | DOI | MR | JFM

[28] Villanueva, I.: Radial continuous rotation invariant valuations on star bodies. Adv. Math. 291 (2016), 961-981. | DOI | MR | JFM

[29] Wang, W., Liu, L.: Fourier transform and valuations. J. Math. Anal. Appl. 470 (2019), 1167-1184. | DOI | MR | JFM

[30] Zhang, G.: A positive solution to the Busemann-Petty problem in $\mathbb R^4$. Ann. Math. (2) 149 (1999), 535-543. | DOI | MR | JFM

[31] Zhao, C.-J.: On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms. J. Geom. Anal. 26 (2016), 1523-1538. | DOI | MR | JFM

Cité par Sources :