On generalized square-full numbers in an arithmetic progression
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 149-163
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $a$ and $b\in \mathbb {N}$. Denote by $R_{a,b}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^{\alpha _1}p_2^{\alpha _2}\cdots p_r^{\alpha _r}$ has all exponents $\alpha _i$ $(1\leq i\leq r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb {N}_0:=\mathbb {N}\cup \{0\}$. All integers in $R_{a,b}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.
DOI :
10.21136/CMJ.2021.0362-20
Classification :
11B50, 11N25, 11N69
Keywords: arithmetic progression; character sum; exponent pair method; square-full number
Keywords: arithmetic progression; character sum; exponent pair method; square-full number
@article{10_21136_CMJ_2021_0362_20,
author = {Sripayap, Angkana and Ruengsinsub, Pattira and Srichan, Teerapat},
title = {On generalized square-full numbers in an arithmetic progression},
journal = {Czechoslovak Mathematical Journal},
pages = {149--163},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2022},
doi = {10.21136/CMJ.2021.0362-20},
mrnumber = {4389111},
zbl = {07511558},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0362-20/}
}
TY - JOUR AU - Sripayap, Angkana AU - Ruengsinsub, Pattira AU - Srichan, Teerapat TI - On generalized square-full numbers in an arithmetic progression JO - Czechoslovak Mathematical Journal PY - 2022 SP - 149 EP - 163 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0362-20/ DO - 10.21136/CMJ.2021.0362-20 LA - en ID - 10_21136_CMJ_2021_0362_20 ER -
%0 Journal Article %A Sripayap, Angkana %A Ruengsinsub, Pattira %A Srichan, Teerapat %T On generalized square-full numbers in an arithmetic progression %J Czechoslovak Mathematical Journal %D 2022 %P 149-163 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0362-20/ %R 10.21136/CMJ.2021.0362-20 %G en %F 10_21136_CMJ_2021_0362_20
Sripayap, Angkana; Ruengsinsub, Pattira; Srichan, Teerapat. On generalized square-full numbers in an arithmetic progression. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 149-163. doi: 10.21136/CMJ.2021.0362-20
Cité par Sources :