$n$-${\rm gr}$-coherent rings and Gorenstein graded modules
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 125-148
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a graded ring and $n\geq 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively.
Let $R$ be a graded ring and $n\geq 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively.
DOI : 10.21136/CMJ.2021.0359-20
Classification : 16D40, 16D50, 16E30, 16W50
Keywords: $n$-gr-coherent ring; Gorenstein $n$-FP-gr-injective module; Gorenstein $n$-gr-flat module; cover; (pre)envelope
@article{10_21136_CMJ_2021_0359_20,
     author = {Amini, Mostafa and Bennis, Driss and Mamdouhi, Soumia},
     title = {$n$-${\rm gr}$-coherent rings and {Gorenstein} graded modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {125--148},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0359-20},
     mrnumber = {4389110},
     zbl = {07511557},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0359-20/}
}
TY  - JOUR
AU  - Amini, Mostafa
AU  - Bennis, Driss
AU  - Mamdouhi, Soumia
TI  - $n$-${\rm gr}$-coherent rings and Gorenstein graded modules
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 125
EP  - 148
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0359-20/
DO  - 10.21136/CMJ.2021.0359-20
LA  - en
ID  - 10_21136_CMJ_2021_0359_20
ER  - 
%0 Journal Article
%A Amini, Mostafa
%A Bennis, Driss
%A Mamdouhi, Soumia
%T $n$-${\rm gr}$-coherent rings and Gorenstein graded modules
%J Czechoslovak Mathematical Journal
%D 2022
%P 125-148
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0359-20/
%R 10.21136/CMJ.2021.0359-20
%G en
%F 10_21136_CMJ_2021_0359_20
Amini, Mostafa; Bennis, Driss; Mamdouhi, Soumia. $n$-${\rm gr}$-coherent rings and Gorenstein graded modules. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 125-148. doi: 10.21136/CMJ.2021.0359-20

[1] Adarbeh, K., Kabbaj, S.: Trivial extensions subject to semi-regularity and semi-coherence. Quaest. Math. 43 (2020), 45-54. | DOI | MR | JFM

[2] Anderson, D. D., Bennis, D., Fahid, B., Shaiea, A.: On $n$-trivial extensions of rings. Rocky Mt. J. Math. 47 (2017), 2439-2511. | DOI | MR | JFM

[3] Anderson, D. D., Winders, M.: Idealization of a module. J. Commun. Algebra 1 (2009), 3-56. | DOI | MR | JFM

[4] Hügel, L. Angeleri, Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18 (2006), 211-229. | DOI | MR | JFM

[5] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-flat modules. Commun. Algebra 26 (1998), 3195-3209. | DOI | MR | JFM

[6] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective and gr-projective modules. Commun. Algebra 26 (1998), 225-240. | DOI | MR | JFM

[7] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Covers and envelopes over gr-Gorenstein rings. J. Algebra 215 (1999), 437-457. | DOI | MR | JFM

[8] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: FP-gr-injective modules and gr-FC- rings. Algebra and Number Theory Lecture Notes in Pure and Applied Mathematics 208. Marcel Dekker, New York (2000), 1-11. | DOI | MR | JFM

[9] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective modules over graded isolated singularities. Commun. Algebra 28 (2000), 3197-3207. | DOI | MR | JFM

[10] Bravo, D., Pérez, M. A.: Finiteness conditions and cotorsion pairs. J. Pure Appl. Algebra 221 (2017), 1249-1267. | DOI | MR | JFM

[11] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. | DOI | MR | JFM

[12] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. | DOI | MR | JFM

[13] Dobbs, D. E., Kabbaj, S.-E., Mahdou, N.: $n$-coherent rings and modules. Commutative ring theory Lecture Notes in Pure and Applied Mathematics 185. Marcel Dekker, New York (1997), 269-281. | MR | JFM

[14] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM

[15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[16] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules. J. Nanjing Univ, Math. Biq. 10 (1993), 1-9. | MR | JFM

[17] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). | DOI | MR | JFM

[18] Gao, Z., Peng, J.: $n$-strongly Gorenstein graded modules. Czech. Math. J. 69 (2019), 55-73. | DOI | MR | JFM

[19] Gao, Z., Wang, F.: Coherent rings and Gorenstein FP-injective modules. Commun. Algebra 40 (2012), 1669-1679. | DOI | MR | JFM

[20] Rozas, J. R. García, Ramos, J. A. López, Torrecillas, B.: On the existence of flat covers in $R$-gr. Commun. Algebra 29 (2001), 3341-3349. | DOI | MR | JFM

[21] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. | DOI | MR | JFM

[22] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[23] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commun. Algebra 1 (2009), 621-633. | DOI | MR | JFM

[24] Mahdou, N.: On Costa's conjecture. Commun. Algebra 29 (2001), 2775-2785. | DOI | MR | JFM

[25] Mao, L.: Ding-graded modules and Gorenstein gr-flat modules. Glasg. Math. J. 60 (2018), 339-360. | DOI | MR | JFM

[26] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl. 7 (2008), 491-506. | DOI | MR | JFM

[27] Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8 (1958), 511-528. | DOI | MR | JFM

[28] Năstăsescu, C.: Some constructions over graded rings: Applications. J. Algebra 120 (1989), 119-138. | DOI | MR | JFM

[29] Năstăsescu, C., Oystaeyen, F. Van: Graded Ring Theory. North-Holland Mathematical Library 28. North-Holland, Amsterdam (1982). | DOI | MR | JFM

[30] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836. Springer, Berlin (2004). | DOI | MR | JFM

[31] Roos, J.-E.: Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos. Commutative Algebra London Mathematical Society Lectures Notes in Mathematics 72. Cambridge University Press, Cambridge (1981), 179-204. | DOI | MR | JFM

[32] Rotman, J. J.: An Introduction to Homological Algebra. Universitext. Springer, New York (2009). | DOI | MR | JFM

[33] Xu, J.: Flat Covers of Modules. Lecture Notes in Mathematics 1634. Springer, Berlin (1996). | DOI | MR | JFM

[34] Yang, X., Liu, Z.: FP-gr-injective modules. Math. J. Okayama Univ. 53 (2011), 83-100. | MR | JFM

[35] Zhao, T., Gao, Z., Huang, Z.: Relative FP-gr-injective and gr-flat modules. Int. J. Algebra Comput. 28 (2018), 959-977. | DOI | MR | JFM

Cité par Sources :