Keywords: compressible isentropic Navier-Stokes-Poisson equation; unipolar; energy solution; blow-up
@article{10_21136_CMJ_2021_0347_20,
author = {Yang, Shanshan and Jiang, Hongbiao and Lin, Yinhe},
title = {Blow-up for {3-D} compressible isentropic {Navier-Stokes-Poisson} equations},
journal = {Czechoslovak Mathematical Journal},
pages = {1189--1198},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0347-20},
mrnumber = {4339121},
zbl = {07442484},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/}
}
TY - JOUR AU - Yang, Shanshan AU - Jiang, Hongbiao AU - Lin, Yinhe TI - Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1189 EP - 1198 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/ DO - 10.21136/CMJ.2021.0347-20 LA - en ID - 10_21136_CMJ_2021_0347_20 ER -
%0 Journal Article %A Yang, Shanshan %A Jiang, Hongbiao %A Lin, Yinhe %T Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations %J Czechoslovak Mathematical Journal %D 2021 %P 1189-1198 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/ %R 10.21136/CMJ.2021.0347-20 %G en %F 10_21136_CMJ_2021_0347_20
Yang, Shanshan; Jiang, Hongbiao; Lin, Yinhe. Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1189-1198. doi: 10.21136/CMJ.2021.0347-20
[1] Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320 (2006), 819-826. | DOI | MR | JFM
[2] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations. Sci. Sin., Math. 50 (2020), 873-884 Chinese. | DOI
[3] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations. Czech. Math. J. 70 (2020), 9-19. | DOI | MR | JFM
[4] Gamba, I. M., Gualdani, M. P., Zhang, P.: On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math. 157 (2009), 37-54. | DOI | MR | JFM
[5] Guo, B., Wang, G.: Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbb R^d$. J. Differ. Equations 261 (2016), 3815-3842. | DOI | MR | JFM
[6] Guo, B., Wang, G.: Blow-up of solutions to quantum hydrodynamic models in half space. J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. | DOI | MR | JFM
[7] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. | DOI | MR | JFM
[8] Lai, N.-A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations. Nonlinear Anal., Real World Appl. 25 (2015), 112-117. | DOI | MR | JFM
[9] Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum. Math. Res. Lett. 20 (2013), 41-50. | DOI | MR | JFM
[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations. J. Differ. Equations 245 (2008), 1762-1774. | DOI | MR | JFM
[11] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. | DOI | MR | JFM
[12] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR | JFM
[13] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. | DOI | MR | JFM
Cité par Sources :