Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1189-1198
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study compressible isentropic Navier-Stokes-Poisson equations in ${\mathbb R}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.
We study compressible isentropic Navier-Stokes-Poisson equations in ${\mathbb R}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.
DOI : 10.21136/CMJ.2021.0347-20
Classification : 35B44, 35Q35
Keywords: compressible isentropic Navier-Stokes-Poisson equation; unipolar; energy solution; blow-up
@article{10_21136_CMJ_2021_0347_20,
     author = {Yang, Shanshan and Jiang, Hongbiao and Lin, Yinhe},
     title = {Blow-up for {3-D} compressible isentropic {Navier-Stokes-Poisson} equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1189--1198},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0347-20},
     mrnumber = {4339121},
     zbl = {07442484},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/}
}
TY  - JOUR
AU  - Yang, Shanshan
AU  - Jiang, Hongbiao
AU  - Lin, Yinhe
TI  - Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1189
EP  - 1198
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/
DO  - 10.21136/CMJ.2021.0347-20
LA  - en
ID  - 10_21136_CMJ_2021_0347_20
ER  - 
%0 Journal Article
%A Yang, Shanshan
%A Jiang, Hongbiao
%A Lin, Yinhe
%T Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations
%J Czechoslovak Mathematical Journal
%D 2021
%P 1189-1198
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0347-20/
%R 10.21136/CMJ.2021.0347-20
%G en
%F 10_21136_CMJ_2021_0347_20
Yang, Shanshan; Jiang, Hongbiao; Lin, Yinhe. Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1189-1198. doi: 10.21136/CMJ.2021.0347-20

[1] Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320 (2006), 819-826. | DOI | MR | JFM

[2] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations. Sci. Sin., Math. 50 (2020), 873-884 Chinese. | DOI

[3] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations. Czech. Math. J. 70 (2020), 9-19. | DOI | MR | JFM

[4] Gamba, I. M., Gualdani, M. P., Zhang, P.: On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math. 157 (2009), 37-54. | DOI | MR | JFM

[5] Guo, B., Wang, G.: Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbb R^d$. J. Differ. Equations 261 (2016), 3815-3842. | DOI | MR | JFM

[6] Guo, B., Wang, G.: Blow-up of solutions to quantum hydrodynamic models in half space. J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. | DOI | MR | JFM

[7] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. | DOI | MR | JFM

[8] Lai, N.-A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations. Nonlinear Anal., Real World Appl. 25 (2015), 112-117. | DOI | MR | JFM

[9] Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum. Math. Res. Lett. 20 (2013), 41-50. | DOI | MR | JFM

[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations. J. Differ. Equations 245 (2008), 1762-1774. | DOI | MR | JFM

[11] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. | DOI | MR | JFM

[12] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. | DOI | MR | JFM

[13] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. | DOI | MR | JFM

Cité par Sources :