Schatten class generalized Toeplitz operators on the Bergman space
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1173-1188
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mu $ be a finite positive measure on the unit disk and let $j\geq 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0
Let $\mu $ be a finite positive measure on the unit disk and let $j\geq 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0$ on $A^{2}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^{\infty }(D, {\rm d}A)$ and $1$, we define the generalized Toeplitz operator $T_{\varphi }^{(j)}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_{\varphi _1}^{(j)}\cdots T_{\varphi _n}^{(j)}$.
DOI : 10.21136/CMJ.2021.0336-20
Classification : 47B10, 47B35
Keywords: generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform
@article{10_21136_CMJ_2021_0336_20,
     author = {Xu, Chunxu and Yu, Tao},
     title = {Schatten class generalized {Toeplitz} operators on the {Bergman} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1173--1188},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0336-20},
     mrnumber = {4339120},
     zbl = {07442483},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/}
}
TY  - JOUR
AU  - Xu, Chunxu
AU  - Yu, Tao
TI  - Schatten class generalized Toeplitz operators on the Bergman space
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1173
EP  - 1188
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/
DO  - 10.21136/CMJ.2021.0336-20
LA  - en
ID  - 10_21136_CMJ_2021_0336_20
ER  - 
%0 Journal Article
%A Xu, Chunxu
%A Yu, Tao
%T Schatten class generalized Toeplitz operators on the Bergman space
%J Czechoslovak Mathematical Journal
%D 2021
%P 1173-1188
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/
%R 10.21136/CMJ.2021.0336-20
%G en
%F 10_21136_CMJ_2021_0336_20
Xu, Chunxu; Yu, Tao. Schatten class generalized Toeplitz operators on the Bergman space. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1173-1188. doi: 10.21136/CMJ.2021.0336-20

[1] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces. Am. J. Math. 110 (1988), 989-1053. | DOI | MR | JFM

[2] Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. Appl. 13 (2007), 243-265. | DOI | MR | JFM

[3] Luecking, D. H.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), 345-368. | DOI | MR | JFM

[4] Miao, J., Zheng, D.: Compact operators on Bergman spaces. Integral Equations Oper. Theory 48 (2004), 61-79. | DOI | MR | JFM

[5] Roman, S.: The formula of Faa di Bruno. Am. Math. Mon. 87 (1980), 805-809. | DOI | MR | JFM

[6] Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series 35. Cambridge University Press, Cambridge (1979). | DOI | MR | JFM

[7] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam. 20 (2004), 563-610. | DOI | MR | JFM

[8] Suárez, D.: A generalization of Toeplitz operators on the Bergman space. J. Oper. Theory 73 (2015), 315-332. | DOI | MR | JFM

[9] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329-357. | MR | JFM

[10] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer, New York (2005). | DOI | MR | JFM

[11] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). | DOI | MR | JFM

[12] Zhu, K.: Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball. New York J. Math. 13 (2007), 299-316. | MR | JFM

Cité par Sources :