Schatten class generalized Toeplitz operators on the Bergman space
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1173-1188
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mu $ be a finite positive measure on the unit disk and let $j\geq 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0$ on $A^{2}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^{\infty }(D, {\rm d}A)$ and $1$, we define the generalized Toeplitz operator $T_{\varphi }^{(j)}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_{\varphi _1}^{(j)}\cdots T_{\varphi _n}^{(j)}$.
DOI :
10.21136/CMJ.2021.0336-20
Classification :
47B10, 47B35
Keywords: generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform
Keywords: generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform
@article{10_21136_CMJ_2021_0336_20,
author = {Xu, Chunxu and Yu, Tao},
title = {Schatten class generalized {Toeplitz} operators on the {Bergman} space},
journal = {Czechoslovak Mathematical Journal},
pages = {1173--1188},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0336-20},
mrnumber = {4339120},
zbl = {07442483},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/}
}
TY - JOUR AU - Xu, Chunxu AU - Yu, Tao TI - Schatten class generalized Toeplitz operators on the Bergman space JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1173 EP - 1188 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/ DO - 10.21136/CMJ.2021.0336-20 LA - en ID - 10_21136_CMJ_2021_0336_20 ER -
%0 Journal Article %A Xu, Chunxu %A Yu, Tao %T Schatten class generalized Toeplitz operators on the Bergman space %J Czechoslovak Mathematical Journal %D 2021 %P 1173-1188 %V 71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0336-20/ %R 10.21136/CMJ.2021.0336-20 %G en %F 10_21136_CMJ_2021_0336_20
Xu, Chunxu; Yu, Tao. Schatten class generalized Toeplitz operators on the Bergman space. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1173-1188. doi: 10.21136/CMJ.2021.0336-20
Cité par Sources :