Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 111-124
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G=(V(G),E(G))$ be a simple graph and $E_{G}(v)$ denote the set of edges incident with a vertex $v$. A neighbor sum distinguishing (NSD) total coloring $\phi $ of $G$ is a proper total coloring of $G$ such that $\sum _{z\in E_{G}(u)\cup \{u\}}\phi (z)\neq \sum _{z\in E_{G}(v)\cup \{v\}}\phi (z)$ for each edge $uv\in E(G)$. Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree $\Delta $ admits an NSD total $(\Delta +3)$-coloring. We prove that the list version of this conjecture holds for any IC-planar graph with $\Delta \geq 11$ but without $5$-cycles by applying the Combinatorial Nullstellensatz.
DOI :
10.21136/CMJ.2021.0333-20
Classification :
05C10, 05C15
Keywords: IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method
Keywords: IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method
@article{10_21136_CMJ_2021_0333_20,
author = {Zhang, Donghan},
title = {Neighbor sum distinguishing list total coloring of {IC-planar} graphs without 5-cycles},
journal = {Czechoslovak Mathematical Journal},
pages = {111--124},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2022},
doi = {10.21136/CMJ.2021.0333-20},
mrnumber = {4389109},
zbl = {07511556},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0333-20/}
}
TY - JOUR AU - Zhang, Donghan TI - Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles JO - Czechoslovak Mathematical Journal PY - 2022 SP - 111 EP - 124 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0333-20/ DO - 10.21136/CMJ.2021.0333-20 LA - en ID - 10_21136_CMJ_2021_0333_20 ER -
%0 Journal Article %A Zhang, Donghan %T Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles %J Czechoslovak Mathematical Journal %D 2022 %P 111-124 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0333-20/ %R 10.21136/CMJ.2021.0333-20 %G en %F 10_21136_CMJ_2021_0333_20
Zhang, Donghan. Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 111-124. doi: 10.21136/CMJ.2021.0333-20
Cité par Sources :