Hardy and Rellich type inequalities with remainders
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 87-110
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.
Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$. Also we establish Rellich type inequalities on arbitrary domains, regular sets, on domains with $\theta $-cone condition and on convex domains.
DOI : 10.21136/CMJ.2021.0325-20
Classification : 26D10, 26D15
Keywords: Hardy inequality; Rellich type inequality; Bessel function; Lamb constant; distance function; Laplace operator
@article{10_21136_CMJ_2021_0325_20,
     author = {Nasibullin, Ramil},
     title = {Hardy and {Rellich} type inequalities with remainders},
     journal = {Czechoslovak Mathematical Journal},
     pages = {87--110},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0325-20},
     mrnumber = {4389108},
     zbl = {07511555},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0325-20/}
}
TY  - JOUR
AU  - Nasibullin, Ramil
TI  - Hardy and Rellich type inequalities with remainders
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 87
EP  - 110
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0325-20/
DO  - 10.21136/CMJ.2021.0325-20
LA  - en
ID  - 10_21136_CMJ_2021_0325_20
ER  - 
%0 Journal Article
%A Nasibullin, Ramil
%T Hardy and Rellich type inequalities with remainders
%J Czechoslovak Mathematical Journal
%D 2022
%P 87-110
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0325-20/
%R 10.21136/CMJ.2021.0325-20
%G en
%F 10_21136_CMJ_2021_0325_20
Nasibullin, Ramil. Hardy and Rellich type inequalities with remainders. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 87-110. doi: 10.21136/CMJ.2021.0325-20

[1] Avkhadiev, F. G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21 (2006), 3-31. | MR | JFM

[2] Avkhadiev, F. G.: Hardy-type inequalities on planar and spatial open sets. Proc. Steklov Inst. Math. 255 (2006), 2-12. | DOI | MR | JFM

[3] Avkhadiev, F. G.: A geometric description of domains whose Hardy constant is equal to 1/4. Izv. Math. 78 (2014), 855-876. | DOI | MR | JFM

[4] Avkhadiev, F. G.: Integral inequalities in domains of hyperbolic type and their applications. Sb. Math. 206 (2015), 1657-1681. | DOI | MR | JFM

[5] Avkhadiev, F. G.: Hardy-Rellich inequalities in domains of the Euclidean space. J. Math. Anal. Appl. 442 (2016), 469-484. | DOI | MR | JFM

[6] Avkhadiev, F. G.: Rellich inequalities for polyharmonic operators in plane domains. Sb. Math. 209 (2018), 292-319. | DOI | MR | JFM

[7] Avkhadiev, F. G.: Hardy-Rellich integral inequalities in domains satisfying the exterior sphere condition. St. Petersbg. Math. J. 30 (2019), 161-179. | DOI | MR | JFM

[8] Avkhadiev, F. G., Nasibullin, R. G.: Hardy-type inequalities in arbitrary domains with finite inner radius. Sib. Math. J. 55 (2014), 191-200. | DOI | MR | JFM

[9] Avkhadiev, F. G., Shafigullin, I. K.: Sharp estimates of Hardy constants for domains with special boundary properties. Russ. Math. 58 (2014), 58-61. | DOI | MR | JFM

[10] Avkhadiev, F. G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. | DOI | MR | JFM

[11] Avkhadiev, F. G., Wirths, K.-J.: Sharp Hardy-type inequalities with Lamb's constants. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. | DOI | MR | JFM

[12] Balinsky, A. A., Evans, W. D., Lewis, R. T.: The Analysis and Geometry of Hardy's Inequality. Universitext. Springer, Cham (2015). | DOI | MR | JFM

[13] Barbatis, G.: Improved Rellich inequalities for the polyharmonic operator. Indiana Univ. Math. J. 55 (2006), 1401-1422. | DOI | MR | JFM

[14] Brezis, H., Marcus, M.: Hardy's inequality revisited. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. | MR | JFM

[15] Davies, E. B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[16] Davies, E. B.: The Hardy constant. Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. | DOI | MR | JFM

[17] Evans, W. D., Lewis, R. T.: Hardy and Rellich inequalities with remainders. J. Math. Inequal. 1 (2007), 473-490. | DOI | MR | JFM

[18] Filippas, S., Maz'ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. | DOI | MR | JFM

[19] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952). | MR | JFM

[20] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy's inequality. J. Funct. Anal. 189 (2002), 539-548. | DOI | MR | JFM

[21] Makarov, R. V., Nasibullin, R. G.: Hardy type inequalities and parametric Lamb equation. Indag. Math., New Ser. 31 (2020), 632-649. | DOI | MR | JFM

[22] Marcus, M., Mizel, V. J., Pinchover, Y.: On the best constant for Hardy's inequality in $\mathbb R^n$. Trans. Am. Math. Soc. 350 (1998), 3237-3255. | DOI | MR | JFM

[23] Matskewich, T., Sobolevskii, P. E.: The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$. Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. | DOI | MR | JFM

[24] Maz'ya, V. G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985). | DOI | MR | JFM

[25] Nasibullin, R. G.: Hardy type inequalities with weights dependent on the Bessel functions. Lobachevskii J. Math. 37 (2016), 274-283. | DOI | MR | JFM

[26] Nasibullin, R. G.: Sharp Hardy type inequalities with weights depending on Bessel function. Ufa Math. J. 9 (2017), 89-97. | DOI | MR

[27] Nasibullin, R. G.: A geometrical version of Hardy-Rellich type inequalities. Math. Slovaca 69 (2019), 785-800. | DOI | MR | JFM

[28] Nasibullin, R. G.: Brezis-Marcus type inequalities with Lamb constant. Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. | DOI | MR | JFM

[29] Nasibullin, R. G.: Multidimensional Hardy type inequalities with remainders. Lobachevskii J. Math. 40 (2019), 1383-1396. | DOI | MR | JFM

[30] Nasibullin, R. G., Tukhvatullina, A. M.: Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains. Ufa Math. J. 5 (2013), 43-55. | DOI | MR

[31] Owen, M. P.: The Hardy-Rellich inequality for polyharmonic operators. Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. | DOI | MR | JFM

[32] Shum, D. T.: On a class of new inequalities. Trans. Am. Math. Soc. 204 (1975), 299-341. | DOI | MR | JFM

[33] Tidblom, J.: A geometrical version of Hardy's inequality for {\it \accent23W}$^{1,p}(\Omega)$. Proc. Am. Math. Soc. 132 (2004), 2265-2271. | DOI | MR | JFM

[34] Tukhvatullina, A. M.: Hardy type inequalities for a special family of non-convex domains. Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. | MR | JFM

Cité par Sources :