Keywords: Hardy inequality; Rellich type inequality; Bessel function; Lamb constant; distance function; Laplace operator
@article{10_21136_CMJ_2021_0325_20,
author = {Nasibullin, Ramil},
title = {Hardy and {Rellich} type inequalities with remainders},
journal = {Czechoslovak Mathematical Journal},
pages = {87--110},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0325-20},
mrnumber = {4389108},
zbl = {07511555},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0325-20/}
}
TY - JOUR AU - Nasibullin, Ramil TI - Hardy and Rellich type inequalities with remainders JO - Czechoslovak Mathematical Journal PY - 2022 SP - 87 EP - 110 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0325-20/ DO - 10.21136/CMJ.2021.0325-20 LA - en ID - 10_21136_CMJ_2021_0325_20 ER -
Nasibullin, Ramil. Hardy and Rellich type inequalities with remainders. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 87-110. doi: 10.21136/CMJ.2021.0325-20
[1] Avkhadiev, F. G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21 (2006), 3-31. | MR | JFM
[2] Avkhadiev, F. G.: Hardy-type inequalities on planar and spatial open sets. Proc. Steklov Inst. Math. 255 (2006), 2-12. | DOI | MR | JFM
[3] Avkhadiev, F. G.: A geometric description of domains whose Hardy constant is equal to 1/4. Izv. Math. 78 (2014), 855-876. | DOI | MR | JFM
[4] Avkhadiev, F. G.: Integral inequalities in domains of hyperbolic type and their applications. Sb. Math. 206 (2015), 1657-1681. | DOI | MR | JFM
[5] Avkhadiev, F. G.: Hardy-Rellich inequalities in domains of the Euclidean space. J. Math. Anal. Appl. 442 (2016), 469-484. | DOI | MR | JFM
[6] Avkhadiev, F. G.: Rellich inequalities for polyharmonic operators in plane domains. Sb. Math. 209 (2018), 292-319. | DOI | MR | JFM
[7] Avkhadiev, F. G.: Hardy-Rellich integral inequalities in domains satisfying the exterior sphere condition. St. Petersbg. Math. J. 30 (2019), 161-179. | DOI | MR | JFM
[8] Avkhadiev, F. G., Nasibullin, R. G.: Hardy-type inequalities in arbitrary domains with finite inner radius. Sib. Math. J. 55 (2014), 191-200. | DOI | MR | JFM
[9] Avkhadiev, F. G., Shafigullin, I. K.: Sharp estimates of Hardy constants for domains with special boundary properties. Russ. Math. 58 (2014), 58-61. | DOI | MR | JFM
[10] Avkhadiev, F. G., Wirths, K.-J.: Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM, Z. Angew. Math. Mech. 87 (2007), 632-642. | DOI | MR | JFM
[11] Avkhadiev, F. G., Wirths, K.-J.: Sharp Hardy-type inequalities with Lamb's constants. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 723-736. | DOI | MR | JFM
[12] Balinsky, A. A., Evans, W. D., Lewis, R. T.: The Analysis and Geometry of Hardy's Inequality. Universitext. Springer, Cham (2015). | DOI | MR | JFM
[13] Barbatis, G.: Improved Rellich inequalities for the polyharmonic operator. Indiana Univ. Math. J. 55 (2006), 1401-1422. | DOI | MR | JFM
[14] Brezis, H., Marcus, M.: Hardy's inequality revisited. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 217-237. | MR | JFM
[15] Davies, E. B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[16] Davies, E. B.: The Hardy constant. Q. J. Math., Oxf. II. Ser. 46 (1995), 417-431. | DOI | MR | JFM
[17] Evans, W. D., Lewis, R. T.: Hardy and Rellich inequalities with remainders. J. Math. Inequal. 1 (2007), 473-490. | DOI | MR | JFM
[18] Filippas, S., Maz'ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Partial Differ. Equ. 25 (2006), 491-501. | DOI | MR | JFM
[19] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952). | MR | JFM
[20] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy's inequality. J. Funct. Anal. 189 (2002), 539-548. | DOI | MR | JFM
[21] Makarov, R. V., Nasibullin, R. G.: Hardy type inequalities and parametric Lamb equation. Indag. Math., New Ser. 31 (2020), 632-649. | DOI | MR | JFM
[22] Marcus, M., Mizel, V. J., Pinchover, Y.: On the best constant for Hardy's inequality in $\mathbb R^n$. Trans. Am. Math. Soc. 350 (1998), 3237-3255. | DOI | MR | JFM
[23] Matskewich, T., Sobolevskii, P. E.: The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$. Nonlinear Anal., Theory Methods Appl. 28 (1997), 1601-1610. | DOI | MR | JFM
[24] Maz'ya, V. G.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985). | DOI | MR | JFM
[25] Nasibullin, R. G.: Hardy type inequalities with weights dependent on the Bessel functions. Lobachevskii J. Math. 37 (2016), 274-283. | DOI | MR | JFM
[26] Nasibullin, R. G.: Sharp Hardy type inequalities with weights depending on Bessel function. Ufa Math. J. 9 (2017), 89-97. | DOI | MR
[27] Nasibullin, R. G.: A geometrical version of Hardy-Rellich type inequalities. Math. Slovaca 69 (2019), 785-800. | DOI | MR | JFM
[28] Nasibullin, R. G.: Brezis-Marcus type inequalities with Lamb constant. Sib. \`Elektron. Mat. Izv. 16 (2019), 449-464. | DOI | MR | JFM
[29] Nasibullin, R. G.: Multidimensional Hardy type inequalities with remainders. Lobachevskii J. Math. 40 (2019), 1383-1396. | DOI | MR | JFM
[30] Nasibullin, R. G., Tukhvatullina, A. M.: Hardy type inequalities with logarithmic and power weights for a special family of non-convex domains. Ufa Math. J. 5 (2013), 43-55. | DOI | MR
[31] Owen, M. P.: The Hardy-Rellich inequality for polyharmonic operators. Proc. R. Soc. Edinb., Sect. A, Math. 129 (1999), 825-839. | DOI | MR | JFM
[32] Shum, D. T.: On a class of new inequalities. Trans. Am. Math. Soc. 204 (1975), 299-341. | DOI | MR | JFM
[33] Tidblom, J.: A geometrical version of Hardy's inequality for {\it \accent23W}$^{1,p}(\Omega)$. Proc. Am. Math. Soc. 132 (2004), 2265-2271. | DOI | MR | JFM
[34] Tukhvatullina, A. M.: Hardy type inequalities for a special family of non-convex domains. Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 153 (2011), 211-220 Russian. | MR | JFM
Cité par Sources :