Keywords: weight; weak type inequality; Hardy-Littlewood maximal function; Orlicz class
@article{10_21136_CMJ_2021_0320_20,
author = {Ren, Yanbo and Ding, Shuang},
title = {Necessary and sufficient conditions for the two-weight weak type maximal inequality in {Orlicz} class},
journal = {Czechoslovak Mathematical Journal},
pages = {79--85},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0320-20},
mrnumber = {4389107},
zbl = {07511554},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/}
}
TY - JOUR AU - Ren, Yanbo AU - Ding, Shuang TI - Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class JO - Czechoslovak Mathematical Journal PY - 2022 SP - 79 EP - 85 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/ DO - 10.21136/CMJ.2021.0320-20 LA - en ID - 10_21136_CMJ_2021_0320_20 ER -
%0 Journal Article %A Ren, Yanbo %A Ding, Shuang %T Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class %J Czechoslovak Mathematical Journal %D 2022 %P 79-85 %V 72 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/ %R 10.21136/CMJ.2021.0320-20 %G en %F 10_21136_CMJ_2021_0320_20
Ren, Yanbo; Ding, Shuang. Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 79-85. doi: 10.21136/CMJ.2021.0320-20
[1] Bagby, R. J.: Weak bounds for the maximal function in weighted Orlicz spaces. Stud. Math. 96 (1990), 195-204. | DOI | MR | JFM
[2] Bloom, S., Kerman, R.: Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Stud. Math. 110 (1994), 149-167. | DOI | MR | JFM
[3] Gallardo, D.: Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator. Isr. J. Math. 67 (1989), 95-108. | DOI | MR | JFM
[4] Gogatishvili, A., Kokilashvili, V.: Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I. Georgian Math. J. 2 (1995), 361-384. | DOI | MR | JFM
[5] Kerman, R. A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function. Stud. Math. 71 (1982), 277-284. | DOI | MR | JFM
[6] Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, Singapore (1991). | DOI | MR | JFM
[7] Lai, Q.: Two weight $\Phi$-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals. Proc. Am. Math. Soc. 118 (1993), 129-142. | DOI | MR | JFM
[8] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM
[9] Pick, L.: Two-weight weak type maximal inequalities in Orlicz classes. Stud. Math. 100 (1991), 207-218. | DOI | MR | JFM
[10] Rao, M. M., Ren, Z. D.: Applications of Orlicz Spaces. Pure and Applied Mathematics, Marcel Dekker 250. Marcel Dekker, New York (2002). | DOI | MR | JFM
Cité par Sources :