Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 79-85
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form $$ \Phi _{1} (\lambda ) \varrho ( \{x\in X\colon M_\mu f (x) > \lambda \} ) \le c \int _X \Phi _{2} (c | {f(x)} | ) \sigma (x) {\rm d} \mu (x), $$ which extends some known results.
We collect known and prove new necessary and sufficient conditions for the weighted weak type maximal inequality of the form $$ \Phi _{1} (\lambda ) \varrho ( \{x\in X\colon M_\mu f (x) > \lambda \} ) \le c \int _X \Phi _{2} (c | {f(x)} | ) \sigma (x) {\rm d} \mu (x), $$ which extends some known results.
DOI : 10.21136/CMJ.2021.0320-20
Classification : 42B25, 46E30
Keywords: weight; weak type inequality; Hardy-Littlewood maximal function; Orlicz class
@article{10_21136_CMJ_2021_0320_20,
     author = {Ren, Yanbo and Ding, Shuang},
     title = {Necessary and sufficient conditions for the two-weight weak type maximal inequality in {Orlicz} class},
     journal = {Czechoslovak Mathematical Journal},
     pages = {79--85},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0320-20},
     mrnumber = {4389107},
     zbl = {07511554},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/}
}
TY  - JOUR
AU  - Ren, Yanbo
AU  - Ding, Shuang
TI  - Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 79
EP  - 85
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/
DO  - 10.21136/CMJ.2021.0320-20
LA  - en
ID  - 10_21136_CMJ_2021_0320_20
ER  - 
%0 Journal Article
%A Ren, Yanbo
%A Ding, Shuang
%T Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class
%J Czechoslovak Mathematical Journal
%D 2022
%P 79-85
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0320-20/
%R 10.21136/CMJ.2021.0320-20
%G en
%F 10_21136_CMJ_2021_0320_20
Ren, Yanbo; Ding, Shuang. Necessary and sufficient conditions for the two-weight weak type maximal inequality in Orlicz class. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 79-85. doi: 10.21136/CMJ.2021.0320-20

[1] Bagby, R. J.: Weak bounds for the maximal function in weighted Orlicz spaces. Stud. Math. 96 (1990), 195-204. | DOI | MR | JFM

[2] Bloom, S., Kerman, R.: Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator. Stud. Math. 110 (1994), 149-167. | DOI | MR | JFM

[3] Gallardo, D.: Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator. Isr. J. Math. 67 (1989), 95-108. | DOI | MR | JFM

[4] Gogatishvili, A., Kokilashvili, V.: Necessary and sufficient conditions for weighted Orlicz class inequalities for maximal functions and singular integrals. I. Georgian Math. J. 2 (1995), 361-384. | DOI | MR | JFM

[5] Kerman, R. A., Torchinsky, A.: Integral inequalities with weights for the Hardy maximal function. Stud. Math. 71 (1982), 277-284. | DOI | MR | JFM

[6] Kokilashvili, V., Krbec, M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, Singapore (1991). | DOI | MR | JFM

[7] Lai, Q.: Two weight $\Phi$-inequalities for the Hardy operator, Hardy-Littlewood maximal operator, and fractional integrals. Proc. Am. Math. Soc. 118 (1993), 129-142. | DOI | MR | JFM

[8] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM

[9] Pick, L.: Two-weight weak type maximal inequalities in Orlicz classes. Stud. Math. 100 (1991), 207-218. | DOI | MR | JFM

[10] Rao, M. M., Ren, Z. D.: Applications of Orlicz Spaces. Pure and Applied Mathematics, Marcel Dekker 250. Marcel Dekker, New York (2002). | DOI | MR | JFM

Cité par Sources :