Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 335-350.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study Hom-Lie superalgebras of Heisenberg type. For 3-dimensional Heisenberg Hom-Lie superalgebras we describe their Hom-Lie super structures, compute the cohomology spaces and characterize their infinitesimal deformations.
DOI : 10.21136/CMJ.2021.0310-19
Classification : 17B56, 17B60, 17B61, 17B99
Keywords: Hom-Lie superalgebra; Lie superalgebra; Heisenberg Hom-Lie superalgebra; cohomology; deformation
@article{10_21136_CMJ_2021_0310_19,
     author = {Zhu, Junxia and Chen, Liangyun},
     title = {Cohomology and deformations of 3-dimensional {Heisenberg} {Hom-Lie} superalgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {335--350},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2021.0310-19},
     mrnumber = {4263173},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0310-19/}
}
TY  - JOUR
AU  - Zhu, Junxia
AU  - Chen, Liangyun
TI  - Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 335
EP  - 350
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0310-19/
DO  - 10.21136/CMJ.2021.0310-19
LA  - en
ID  - 10_21136_CMJ_2021_0310_19
ER  - 
%0 Journal Article
%A Zhu, Junxia
%A Chen, Liangyun
%T Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras
%J Czechoslovak Mathematical Journal
%D 2021
%P 335-350
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0310-19/
%R 10.21136/CMJ.2021.0310-19
%G en
%F 10_21136_CMJ_2021_0310_19
Zhu, Junxia; Chen, Liangyun. Cohomology and deformations of 3-dimensional Heisenberg Hom-Lie superalgebras. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 335-350. doi : 10.21136/CMJ.2021.0310-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0310-19/

Cité par Sources :