Keywords: generalized (edge-)connectivity; line graph; total graph; complete graph
@article{10_21136_CMJ_2021_0287_19,
author = {Li, Yinkui and Mao, Yaping and Wang, Zhao and Wei, Zongtian},
title = {Generalized connectivity of some total graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {623--640},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2021.0287-19},
mrnumber = {4295235},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/}
}
TY - JOUR AU - Li, Yinkui AU - Mao, Yaping AU - Wang, Zhao AU - Wei, Zongtian TI - Generalized connectivity of some total graphs JO - Czechoslovak Mathematical Journal PY - 2021 SP - 623 EP - 640 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/ DO - 10.21136/CMJ.2021.0287-19 LA - en ID - 10_21136_CMJ_2021_0287_19 ER -
%0 Journal Article %A Li, Yinkui %A Mao, Yaping %A Wang, Zhao %A Wei, Zongtian %T Generalized connectivity of some total graphs %J Czechoslovak Mathematical Journal %D 2021 %P 623-640 %V 71 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/ %R 10.21136/CMJ.2021.0287-19 %G en %F 10_21136_CMJ_2021_0287_19
Li, Yinkui; Mao, Yaping; Wang, Zhao; Wei, Zongtian. Generalized connectivity of some total graphs. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 623-640. doi: 10.21136/CMJ.2021.0287-19
[1] Beineke, L. W., (eds.), R. J. Wilson: Topics in Structural Graph Theory. Encyclopedia of Mathematics and its Applications 147. Cambrige University Press, Cambridge (2013). | MR | JFM
[2] Boesch, F. T., Chen, S.: A generalization of line connectivity and optimally invulnerable graphs. SIAM J. Appl. Math. 34 (1978), 657-665. | DOI | MR | JFM
[3] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008). | DOI | MR | JFM
[4] Chartrand, G., Kappor, S. F., Lesniak, L., Lick, D. R.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2 (1984), 1-6. | MR
[5] Chartrand, G., Okamoto, F., Zhang, P.: Rainbow trees in graphs and generalized connectivity. Networks 55 (2010), 360-367. | DOI | MR | JFM
[6] Chartrand, G., Stewart, M. J.: The connectivity of line-graphs. Math. Ann. 182 (1969), 170-174. | DOI | MR | JFM
[7] Gu, R., Li, X., Shi, Y.: The generalized 3-connectivity of random graphs. Acta Math. Sin., Chin. Ser. 57 (2014), 321-330 Chinese. | JFM
[8] Hager, M.: Pendant tree-connectivity. J. Comb. Theory, Ser. B 38 (1985), 179-189. | DOI | MR | JFM
[9] Hamada, T., Nonaka, T., Yoshimura, I.: On the connectivity of total graphs. Math. Ann. 196 (1972), 30-38. | DOI | MR | JFM
[10] Kriesell, M.: Edge-disjoint trees containing some given vertices in a graph. J. Comb. Theory, Ser. B 88 (2003), 53-65. | DOI | MR | JFM
[11] Kriesell, M.: Edge disjoint Steiner trees in graphs without large bridges. J. Graph Theory 62 (2009), 188-198. | DOI | MR | JFM
[12] Li, S., Li, X.: Note on the hardness of generalized connectivity. J. Comb. Optim. 24 (2012), 389-396. | DOI | MR | JFM
[13] Li, S., Li, X., Shi, Y.: The minimal size of a graph with generalized connectivity $\kappa_3 = 2$. Australas. J. Comb. 51 (2011), 209-220. | MR | JFM
[14] Li, S., Li, X., Zhou, W.: Sharp bounds for the generalized connectivity $\kappa_3(G)$. Discrete Math. 310 (2010), 2147-2163. | DOI | MR | JFM
[15] Li, S., Li, W., Shi, Y., Sun, H.: On minimally 2-connected graphs with generalized connectivity $\kappa_3=2$. J. Comb. Optim. 34 (2017), 141-164. | DOI | MR | JFM
[16] Li, S., Shi, Y., Tu, J.: The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles. Graphs Comb. 33 (2017), 1195-1209. | DOI | MR | JFM
[17] Li, X., Mao, Y.: Generalized Connectivity of Graphs. SpringerBriefs in Mathematics. Springer, Cham (2016). | DOI | MR | JFM
[18] Li, X., Mao, Y., Sun, Y.: On the generalized (edge-)connectivity of graphs. Australas. J. Comb. 58 (2014), 304-319. | MR | JFM
[19] Nash-Williams, C. S. J. A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36 (1961), 445-450. | DOI | MR | JFM
[20] Okamoto, F., Zhang, P.: The tree connectivity of regular complete bipartite graphs. J. Comb. Math. Comb. Comput. 74 (2010), 279-293. | MR | JFM
[21] Tutte, W. T.: On the problem of decomposing a graph into $n$ connected factors. J. Lond. Math. Soc. 36 (1961), 221-230. | DOI | MR | JFM
Cité par Sources :