Generalized connectivity of some total graphs
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 623-640.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.
DOI : 10.21136/CMJ.2021.0287-19
Classification : 05C05, 05C40, 05C70, 05C75
Keywords: generalized (edge-)connectivity; line graph; total graph; complete graph
@article{10_21136_CMJ_2021_0287_19,
     author = {Li, Yinkui and Mao, Yaping and Wang, Zhao and Wei, Zongtian},
     title = {Generalized connectivity of some total graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {623--640},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.21136/CMJ.2021.0287-19},
     mrnumber = {4295235},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/}
}
TY  - JOUR
AU  - Li, Yinkui
AU  - Mao, Yaping
AU  - Wang, Zhao
AU  - Wei, Zongtian
TI  - Generalized connectivity of some total graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 623
EP  - 640
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/
DO  - 10.21136/CMJ.2021.0287-19
LA  - en
ID  - 10_21136_CMJ_2021_0287_19
ER  - 
%0 Journal Article
%A Li, Yinkui
%A Mao, Yaping
%A Wang, Zhao
%A Wei, Zongtian
%T Generalized connectivity of some total graphs
%J Czechoslovak Mathematical Journal
%D 2021
%P 623-640
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/
%R 10.21136/CMJ.2021.0287-19
%G en
%F 10_21136_CMJ_2021_0287_19
Li, Yinkui; Mao, Yaping; Wang, Zhao; Wei, Zongtian. Generalized connectivity of some total graphs. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 623-640. doi : 10.21136/CMJ.2021.0287-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/

Cité par Sources :