Generalized connectivity of some total graphs
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 623-640
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the generalized $k$-connectivity $\kappa _k(G)$ as introduced by Hager in 1985, as well as the more recently introduced generalized $k$-edge-connectivity $\lambda _k(G)$. We determine the exact value of $\kappa _k(G)$ and $\lambda _k(G)$ for the line graphs and total graphs of trees, unicyclic graphs, and also for complete graphs for the case $k=3$.
DOI :
10.21136/CMJ.2021.0287-19
Classification :
05C05, 05C40, 05C70, 05C75
Keywords: generalized (edge-)connectivity; line graph; total graph; complete graph
Keywords: generalized (edge-)connectivity; line graph; total graph; complete graph
@article{10_21136_CMJ_2021_0287_19,
author = {Li, Yinkui and Mao, Yaping and Wang, Zhao and Wei, Zongtian},
title = {Generalized connectivity of some total graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {623--640},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2021},
doi = {10.21136/CMJ.2021.0287-19},
mrnumber = {4295235},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/}
}
TY - JOUR AU - Li, Yinkui AU - Mao, Yaping AU - Wang, Zhao AU - Wei, Zongtian TI - Generalized connectivity of some total graphs JO - Czechoslovak Mathematical Journal PY - 2021 SP - 623 EP - 640 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/ DO - 10.21136/CMJ.2021.0287-19 LA - en ID - 10_21136_CMJ_2021_0287_19 ER -
%0 Journal Article %A Li, Yinkui %A Mao, Yaping %A Wang, Zhao %A Wei, Zongtian %T Generalized connectivity of some total graphs %J Czechoslovak Mathematical Journal %D 2021 %P 623-640 %V 71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0287-19/ %R 10.21136/CMJ.2021.0287-19 %G en %F 10_21136_CMJ_2021_0287_19
Li, Yinkui; Mao, Yaping; Wang, Zhao; Wei, Zongtian. Generalized connectivity of some total graphs. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 623-640. doi: 10.21136/CMJ.2021.0287-19
Cité par Sources :