Keywords: signed graph; join; adjacency matrix; main eigenvalue; net-degree; association scheme
@article{10_21136_CMJ_2021_0256_20,
author = {Ramezani, Farzaneh and Rowlinson, Peter and Stani\'c, Zoran},
title = {Signed graphs with at most three eigenvalues},
journal = {Czechoslovak Mathematical Journal},
pages = {59--77},
year = {2022},
volume = {72},
number = {1},
doi = {10.21136/CMJ.2021.0256-20},
mrnumber = {4389106},
zbl = {07511553},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0256-20/}
}
TY - JOUR AU - Ramezani, Farzaneh AU - Rowlinson, Peter AU - Stanić, Zoran TI - Signed graphs with at most three eigenvalues JO - Czechoslovak Mathematical Journal PY - 2022 SP - 59 EP - 77 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0256-20/ DO - 10.21136/CMJ.2021.0256-20 LA - en ID - 10_21136_CMJ_2021_0256_20 ER -
%0 Journal Article %A Ramezani, Farzaneh %A Rowlinson, Peter %A Stanić, Zoran %T Signed graphs with at most three eigenvalues %J Czechoslovak Mathematical Journal %D 2022 %P 59-77 %V 72 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0256-20/ %R 10.21136/CMJ.2021.0256-20 %G en %F 10_21136_CMJ_2021_0256_20
Ramezani, Farzaneh; Rowlinson, Peter; Stanić, Zoran. Signed graphs with at most three eigenvalues. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 59-77. doi: 10.21136/CMJ.2021.0256-20
[1] elić, M. Anđ, Koledin, T., Stanić, Z.: On regular signed graphs with three eigenvalues. Discuss. Math., Graph Theory 40 (2020), 405-416. | DOI | MR | JFM
[2] Belardo, F., Cioabă, S. M., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs. Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. | DOI | MR | JFM
[3] Belardo, F., Simić, S. K.: On the Laplacian coefficients of signed graphs. Linear Algebra Appl. 475 (2015), 94-113. | DOI | MR | JFM
[4] Chan, H. C., Rodger, C. A., Seberry, J.: On inequivalent weighing matrices. Ars Comb. 21A (1986), 299-333. | MR | JFM
[5] Cheng, X.-M., Gavrilyuk, A. L., Greaves, G. R. W., Koolen, J. H.: Biregular graphs with three eigenvalues. Eur. J. Comb. 56 (2016), 57-80. | DOI | MR | JFM
[6] Cheng, X.-M., Greaves, G. R. W., Koolen, J. H.: Graphs with three eigenvalues and second largest eigenvalue at most 1. J. Comb. Theory, Ser. B 129 (2018), 55-78. | DOI | MR | JFM
[7] Colbourn, C. J., (eds.), J. H. Dinitz: Handbook of Combinatorial Designs. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007). | DOI | MR | JFM
[8] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. J. A. Barth, Leipzig (1995). | MR | JFM
[9] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). | DOI | MR | JFM
[10] Harada, M., Munemasa, A.: On the classification of weighing matrices and self-orthogonal codes. J. Comb. Des. 20 (2012), 45-57. | DOI | MR | JFM
[11] Hou, Y., Tang, Z., Wang, D.: On signed graphs with just two distinct adjacency eigenvalues. Discrete Math. 342 (2019), Article ID 111615, 8 pages. | DOI | MR | JFM
[12] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2,2]$. J. Algebra 317 (2007), 260-290. | DOI | MR | JFM
[13] Ramezani, F.: On the signed graphs with two distinct eigenvalues. Util. Math. 114 (2020), 33-48. | MR | JFM
[14] Ramezani, F.: Some regular signed graphs with only two distinct eigenvalues. (to appear) in Linear Multilinear Algebra. | DOI | MR
[15] Ramezani, F., Rowlinson, P., Stanić, Z.: On eigenvalue multiplicity in signed graphs. Discrete Math. 343 (2020), Article ID 111982, 8 pages. | DOI | MR | JFM
[16] Rowlinson, P.: Certain 3-decompositions of complete graphs, with an application to finite fields. Proc. R. Soc. Edinb., Sect. A 99 (1985), 277-281. | DOI | MR | JFM
[17] Rowlinson, P.: On graphs with just three distinct eigenvalues. Linear Algebra Appl. 507 (2016), 462-473. | DOI | MR | JFM
[18] Rowlinson, P.: More on graphs with just three distinct eigenvalues. Appl. Anal. Discrete Math. 11 (2017), 74-80. | DOI | MR
[19] Seidel, J. J.: Graphs and two-graphs. Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing Utilitas Mathematica Publication, Winnipeg (1974), 125-143. | MR | JFM
[20] Simić, S. K., Stanić, Z.: Polynomial reconstruction of signed graphs. Linear Algebra Appl. 501 (2016), 390-408. | DOI | MR | JFM
[21] Stanić, Z.: Regular Graphs: A Spectral Approach. De Gruyter Series in Discrete Mathematics and Applications 4. De Gruyter, Berlin (2017). | DOI | MR | JFM
[22] Stanić, Z.: Integral regular net-balanced signed graphs with vertex degree at most four. Ars Math. Contemp. 17 (2019), 103-114. | DOI | MR | JFM
[23] Stanić, Z.: On strongly regular signed graphs. Discrete Appl. Math. 271 (2019), 184-190 corrigendum ibid. 284 640 2020. | DOI | MR | JFM
[24] Stanić, Z.: Spectra of signed graphs with two eigenvalues. Appl. Math. Comput. 364 (2020), Article ID 124627, 9 pages. | DOI | MR | JFM
[25] Dam, E. R. van: Nonregular graphs with three eigenvalues. J. Comb. Theory, Ser. B 73 (1998), 101-118. | DOI | MR | JFM
[26] Dam, E. R. van: Three-class association schemes. J. Algebr. Comb. 10 (1999), 69-107. | DOI | MR | JFM
[27] Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4 (1982), 47-74. | DOI | MR | JFM
[28] Zaslavsky, T.: Matrices in the theory of signed simple graphs. Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. | MR | JFM
Cité par Sources :